

January 17, 2018

An Introduction to Network Meta-Analysis

The power of **knowledge.** The value of **understanding.**

Meet Our Team

Shaun Abeysinghe, PhD Senior Director, Data Analytics and Design Strategy

Claire Ainsworth, MSc Senior Statistician, Data Analytics and Design Strategy

Emma Hawe, MSc Senior Director, Data Analytics and Design Strategy

RTI (h)(s)Health Solutions

Learning Objectives

- Understand terms such as direct and indirect comparisons, mixed-treatment comparisons, and network meta analyses (NMAs) and why they are used
- Know the difference between analytic approaches such as fixed and random effects models, and frequentist and Bayesian methods
- Understand concepts, assumptions and limitations of NMAs, such as heterogeneity, inconsistency, and bias

The power of knowledge. The value of understanding.

NMA: The Big Picture!

Medicine will advance more within the next 10 years than it did in the last 100 years

- Many treatment options for the same indication
- Randomised controlled trials (RCTs) of A vs. B vs. C vs. D almost never exist
- Instead RCTs compare A vs.
 P, B vs. P etc.
- How do we determine which treatment is "best"?

Why Do We Conduct NMAs?

- Each year, more than 1,000,000 articles are published in more than 20,000 journals.
- In 2017, 343 publications of RCTs in schizophrenia in PubMed
 - Almost one per day!
- NMAs valuable tool for:
 - Practitioners, researchers, and decision-makers
 - Supporting all stages of a product's life cycle

What is Meta-Analysis?

The power of **knowledge**. The value of **understanding**.

What is Meta-Analysis?

Indirect comparison

 when only two (or one pair of) treatments are being compared indirectly

Mixed treatment comparisons

 a generalization of indirect comparisons with more than two (or multiple pairs of) treatments being compared indirectly

What Is NMA?

A systematic method for pooling the evidence from independent sources, especially randomized, controlled trials (RCTs)

Networks of evidence

Closed loops in network: combination of direct and indirect evidence

Figure adapted from:

https://www.ispor.org/workpaper/interpreting-indirect-treatment-comparison-and-network-meta-analysis-studies-for-decision-making.pdf

Who is faster, the red or blue runner?

The red runner finishes in 9.75 sec

Tuesday afternoon

The green runner finishes in 10.25 sec

The blue runner finishes in **10** sec

The green runner finishes in 10.75 sec

Saturday morning

Conducting an NMA

- 1. Develop systematic review protocol, conduct literature searches, and screen articles.
- 3. Plan the meta-analysis for each endpoint and extract arm-level data.

5. Report findings of the NMA.

Alternative Modelling Approaches

Frequentist Inference

Parameter estimates based on sample from population with assumed distribution

Fixed Effect

Bayesian Inference

Parameter estimates drawn from posterior distribution which is product of prior and likelihood function

Random Effect

Exchangeability, heterogeneity and inconsistency

• Key assumption underlying NMA is exchangeability

- Heterogeneity Differences between duplicate evidence for same comparison
- Consistency direct and indirect evidence in agreement

Example

Study name	Treatment	n	N
1	А	200	800
1	В	210	400
1	С	680	800
2	А	40	160
2	В	22	40
3	А	95	370
3	С	310	362
4	А	104	390
4	D	2000	3300
5	А	85	315
5	D	40	95
6	А	94	348
6	В	200	385
7	А	170	347
7	E	300	386
8	А	70	136
8	E	180	230

D

E

2

Example: Placebo response rate

Response for A ± 95% credible intervals

Example: Heterogeneity

Example: Inconsistency

Example: Forest plot and pairwise grid

A	1	0.31 (0.2, 0.48)	0.06 (0.04, 0.09)	0.3 (0.2, 0.55)	0.28 (0.17, 0.46)
в	3.24 (2.15, 5.01)	1	0.19 (0.11, 0.33)	0.97 (0.55, 2.05)	0.9 (0.48, 1.75)
с	17 (11, 27)	5.3 (3.01, 9)	1	5.12 (2.78, 11)	4.77 (2.45, 9.6)
D	3.34 (1.8, 5.02)	1.04 (0.49, 1.81)	0.2 (0.09, 0.36)	1	0.93 (0.41, 1.76)
Е	3.57 (2.15, 5.8)	1.11 (0.57, 2.09)	0.21 (0.1, 0.41)	1.08 (0.57, 2.42)	1
	Α	В	С	D	E

Odds ratio for response relative to A ± 95% credible intervals (log scale) Endpoint: Response, Patient population: Overall, MTC: Random effects, Covariates: None

Example: Predicted rates and rankogram

Predicted response rates from Bayesian MTC

Cumulative rankograms for treatment regimens from Bayesian MTC

Rank Endpoint: Response, Patient population: Overall, MTC: Random effects, Covariates: None

Conclusion: NMAs

- Provides an approach to collectively consider available evidence and provide comparative efficacy and safety between treatments
- Important considerations
- Limitations
- Evolving field

Thank You Questions?

Claire Ainsworth <u>cainsworth@rti.org</u> Shaun Abeysinghe <u>sabeysinghe@rti.org</u> Emma Hawe <u>ehawe@rti.org</u>