ADAPTING LITERATURE-BASED REMISSION RATES FOR CHRONIC SPONTANEOUS/IDIOPATHIC URTICARIA TO THE NEEDS OF A HEALTH ECONOMIC MODEL: A KAPLAN-MEIER APPROACH

Partha G¹, Gupta S¹, Bhattacharyya S¹, Halliday A², McBride D³, Graham J⁴, <u>Balp MM⁵</u>, Marsland A⁶

¹Novartis Healthcare Pvt. Ltd., Hyderabad, India, ²Novartis Pharmaceuticals UK Limited, Surrey, United Kingdom, ³RTI Health Solutions, Manchester, United Kingdom, ⁴RTI Health Solutions, Research Triangle Park, NC, USA, ⁵Novartis Pharma AG, Basel, Switzerland, ⁶Salford Royal Hospital, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom

BACKGROUND

- Remission, where symptoms spontaneously resolve, is seen in patients with chronic urticaria (CU)
- Chronic spontaneous urticaria (CSU), also known as chronic idiopathic urticaria (CIU), is a subtype of CU
- Limited literature currently exists regarding remission rates among patients with CU and CSU/CIU, and available estimates vary
- Due to the requirements of economic modelling (e.g. cycle length), these estimates cannot be incorporated directly

OBJECTIVE

• To adapt published remission rates in CSU patients to the needs of an economic model, using various statistical methods

Figure 4. Curve fit using different distributions on data points from Nebiolo⁵

PRM86

METHODS

- A systematic review was conducted to identify literature on the natural course of CSU, with a focus on spontaneous remission rates¹
- From this systematic review, four studies were selected on the basis of a similar study population to the target population in the economic model
 - Beltrani et al. (2002)²

van der Valk et al. (2002)⁴

Toubi et al. (2004)³

- Nebiolo et al. (2009)⁵
- All the four papers reported the proportion of patients that would have undergone/not undergone remission at different time points
- The study by Nebiolo et al⁵ reported data for hypertensive (HTN) and non-hypertensive (non-HTN) cohorts. A discrepancy in the text was noted by Southampton Health Technology Assessments Centre (SHTAC) in the paper that switches the HTN and non-HTN cohort while reporting the results. The K-M curve was therefore used as it was considered more reliable and correct estimate from the study. The plots were extracted separately for the HTN and non-HTN curves and the weighted average was considered for the calculations
- The study by van der Valk et al. (2002)⁴ reported data for two populations, (i) CSU/CIU only and (ii) all forms of CU; therefore, a total of five populations were considered
- A four-step approach was undertaken to identify the best possible distribution fit for data extrapolation and to generate appropriate remission rates (**Figure 1**)
- Remission rates were calculated for 78 years to correspond to the lifetime horizon used in the cost-effectiveness model

Figure 1. The four-step methodology

• **Table 1** presents the Kolmogorov-Smirnov (KS) distance, i.e. differential estimates between the expected values and the actual fit values. A lower value means that the distribution is a better fit.

Table 1. K-S distance values for the fitted distributions

Distribution	Beltrani ²	Toubi ³	van der Valk (CSU patients) ⁴	van der Valk (all CU patients) ⁴	Nebiolo ⁵				
	K-S distance								
Weibull	0.179	0.019	1.66 e-16	0.0428	5.55 e-17				
Log normal	0.200	0.011	1.66 e-16	0.0261	1.66 e-16				
Exponential	0.481	0.081	0.042	0.1205	0.099				
Log logistic	0.152	0.012	2.22 e-16	0.0233	5.55 e-17				

• A summary of remission rates over 1, 3, 5, 10 and 20 years are depicted in **Figure 5A**. Yearly remission rates across 20 years are presented in **Figure 5B**. As the remission rates were calculated per 4-week cycle length, details for the first year are presented in **Figure 5C**.

Conversion into

rates

4-week cycle length

RESULTS

• The curve fit using different statistical distributions for all four papers are presented below (**Figures 2–4**)

Figure 3. Curve fit using different distributions on data points from van der Valk⁴

(C)

Cycle	Week	Beltrani	Toubi	van der Walk (All CU patients)	van der Walk (CSU patients)	Nebiolo
1	4	8.33%	2.62%	0.30%	2.42%	1.06%
2	8	13.17%	6.34%	0.92%	3.81%	2.11%
3	12	16.98 %	9.93%	1.65 %	4.95 %	3.15%
4	16	20.19%	13.26 %	2.44 %	5.95%	4.18 %
5	20	22.98%	16.32 %	3.25%	6.86%	5.20%
6	24	25.45 %	19.14 %	4.06%	7.69%	6.20%
7	28	27.67%	21.74 %	4.87 %	8.46%	7.19%
8	32	29.69%	24.15 %	5.67%	9.19%	8.17%
9	36	31.53%	26.39%	6.46%	9.88%	9.14%
10	40	33.24%	28.48%	7.24%	10.53%	10.10%
11	44	34.82%	30.44%	8.00%	11.15%	11.05%
12	48	36.29%	32.28%	8.75%	11.75%	11.99%
13	52	37.67%	34.01%	9.48%	12.32%	12.92 %

CONCLUSION

• This approach provides a robust statistical method for adapting the literature estimates as per the requirements of an

- economic model
- Due to the wide range of remission estimates in the literature face validation via expert clinical opinion is recommended to determine appropriate model inputs

REFERENCES

- 1. Marsland A et al. COP15-1728. Presented at 24th EADV Congress, 7–11 October 2015, Copenhagen, Denmark
- 2. Beltrani VS et al. Clin Rev Allergy Immunol 2002;23:147–169
- . Toubi E et al. Allergy 2004;59:869–873
- 4. van der Valk PG et al. Br J Dermatol 2002;146:110–113
- 5. Nebiolo F et al. Ann Allergy Asthma Immunol 2009;103:407–410

CONFLICT OF INTEREST

Scan to download a

reprint of this poster

GP, SG, SB, AH and MMB are employees of Novartis. DMcB and JG are employees of RTI Health Solutions. AM has received research support/ consultancies/ meeting assistance from Novartis, UCB Pharma and GSK

ACKNOWLEDGEMENT

The authors thank Rumjhum Agrawal (Novartis) for assistance with poster content and Maninder Reddy Karka (Novartis) for designing the poster layout

FUNDING

The study was funded by Novartis Pharma AG, Basel, Switzerland

Poster presented at the ISPOR 18th Annual European Congress, 7—11 November 2015, Milano Congressi, Milan, Italy