RTI(h)(s)

Comparison of Bayesian Network Meta-Analyses Health Solutions in WinBUGS and SAS Frameworks for Binomial Models

Jean-Gabriel Le Moine, Shaun Abeysinghe

RTI Health Solutions, Manchester, United Kingdom

BACKGROUND

- Typically, network meta-analyses (NMAs) are conducted using the Bayesian software programs WinBUGS or Open BUGS.
- Introduced with SAS 9.2, the Monte-Carlo Markov-Chain (MCMC) procedure performs Bayesian analyses using the Metropolis-Hasting sampler.
- Despite being the primary statistical analysis package used in the pharmaceutical industry, SAS is rarely considered for performing NMAs.

OBJECTIVE

 The objective of this study was to perform Bayesian NMAs using WinBUGS and SAS and to investigate whether SAS represents a viable alternative to conduct NMAs for binomial models in a variety of treatment networks.

METHODS

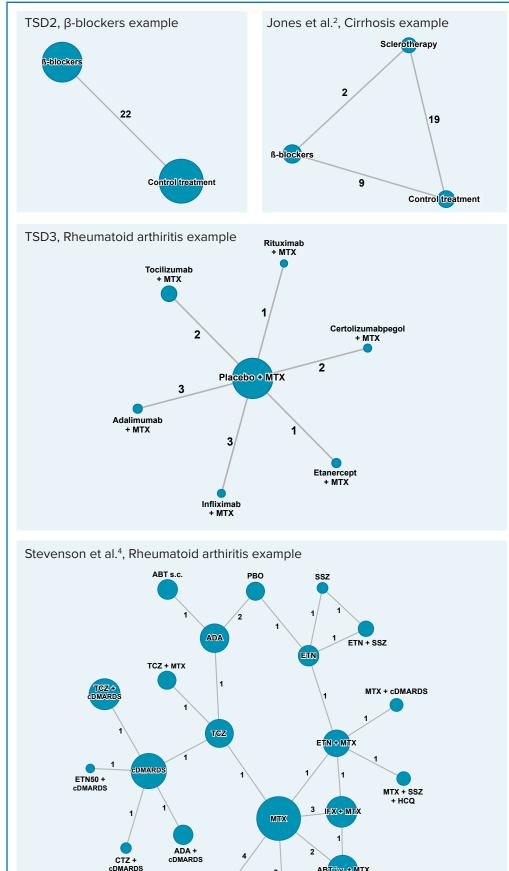

- Literature was searched to identify articles containing datasets suitable for meta-analysis of binomial outcomes.
- Four networks of various complexity were built: head-to-head comparison,¹ closed-loop network,² star-shaped network,³ and mixed-treatment comparison network⁴ (Figure 1).
- WinBUGS meta-analyses were based on the code from Lu and Ades.⁵ In each model run, there was a burn-in of 20,000 iterations, followed by 250,000 additional iterations. Thinning was set to 50 to reduce autocorrelations.
- SAS analyses used the MCMC procedure and were conducted in SAS v9.4. An initial 20,000 iterations were run as burn-in, completed by 2,000,000 simulations. (SAS requires more MCMC draws to achieve convergence.) Thinning was set to 100 to reduce autocorrelations.
- Comparison of results between the two software programs focused on the log-odds ratio (OR) of treatment versus control comparator (mean log-OR and 95% credible intervals [Crls]).

Table 1. Mean Log-OR and Crl Estimates for Head-to-Head and Closed-Loop Networks

		SAS—PROC MCMC		WinBUGS	
		Mean	Crl 95%ª	Mean	Crl 95%
Head-to-head comp	arison				
FE model	Control vs. β-blockers	-0.261	-0.360 to -0.164	-0.262	-0.360 to -0.163
RE model	Control vs. β-blockers	-0.249	-0.374 to -0.117	-0.248	-0.374 to -0.116
Closed-loop model					
FE model	Control vs. sclerotherapy	-0.560	-0.784 to -0.340	-0.560	–0.783 to –0.339
	Control vs. β-blockers	-0.678	–0.997 to –0.364	-0.678	-0.998 to -0.366
	Sclerotherapy vs. β-blockers	-0.118	-0.494 to 0.259	-0.118	-0.490 to 0.254
RE model	Control vs. sclerotherapy	-0.601	-1.239 to 0.031	-0.626	-1.271 to 0.014
	Control vs. β-blockers	-0.792	-1.704 to 0.103	-0.728	–1.666 to 0.197
	Sclerotherapy vs. β-blockers	-0.174	-1.241 to 0.880	-0.101	-1.237 to 1.032

^a Equal-tail Crl.

Figure 1. Networks of Evidence for the Conducted Analyses

Figure 2. Forest Plots for SAS and WinBUGS Results for Star-Shaped Network—TSD3, Rheumatoid Arthritis Example

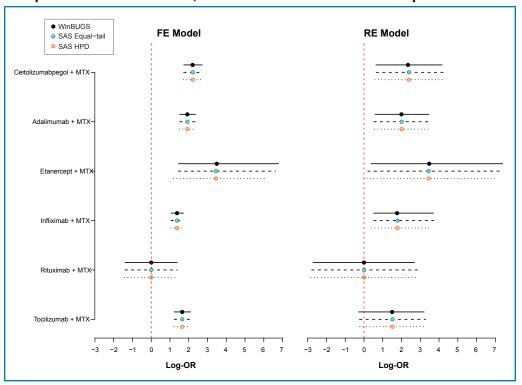


Figure 3. Forest Plots for SAS and WinBUGS Results for Mixed-Treatment Comparison—Stevenson et al.*, Rheumatoid Arthritis Example

RE Model

FE Model

WinBUGS

SAS HPD

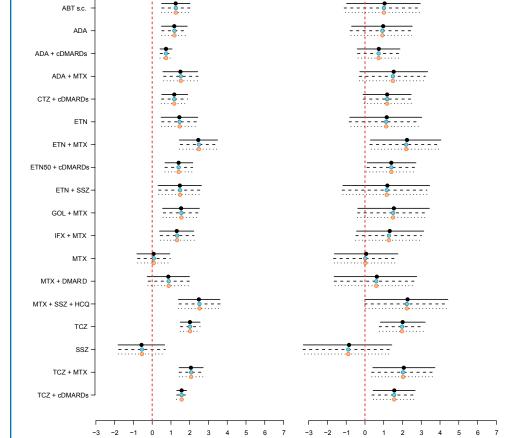
PBO

ABT i.v. + MTX

ABT s.c.

SAS Equal-tai

 SAS computes two different Crls by default: equal-tail and high posterior density (HPD). Equal-tail Crls are reported. Significant differences with HPD are mentioned.


RESULTS

- Results showed strong consistency between SAS and WinBUGS estimates (Table 1, Figure 2, and Figure 3).
- Differences between mean log-OR estimates ranged from 0 to 0.074. Differences with the Crls ranged from 0 to 0.217.
- · Compared with the random-effect (RE) model, estimates from the fixed-effect (FE) model were more consistent between statistical packages.
- Discrepancies between the two softwares' results increase with the network's complexity and as the number of articles per comparison diminishes.
- For two comparisons, HPD intervals from SAS led to different conclusions than WinBUGS.
 - Star-shaped network: SAS HPD 95% Crl (-0.016 to 7.055) versus WinBUGS 95% Crl (0.372-7.391) (Figure 2, ETN)
 - Mixed-treatment comparison: SAS HPD 95% Crl (0.036-4.432) versus WinBUGS 95% Crl (-0.015 to 4.419) (Figure 3, MTX + SSZ + HCQ)

ABT i.v. = intravenous abatacept; ABT s.c. = subcutaneous abatacept; ADA = adalimumab; cDMARDs = conventional disease-modifying anti-rheumatic drugs; CTZ = certolizumab; ETN = etanercept; ETN50 = etanercept 50 mg; GOL = golimumab; HCQ = hydroxichloroquine; IFX = infliximab; MTX = methotrexate; PBO = placebo; SSZ = sulfasalazine; TCZ = tocilizumab.

GOL + MTX

ADA + MTX

6 7

4 5

-3 -2 -1 0

Log-OR

CONCLUSIONS

- Our results conducted on binomial outcomes show strong agreement between SAS and WinBUGS, despite the use of a different sampler. RE analyses produce larger discrepancies between the two software programs.
- When using SAS, attention needs to be given to which Crl to consider (equal-tail or HPD). With more sophisticated networks, HPD Crls produced different conclusions than WinBUGS.
- Historical use of WinBUGS for NMAs has resulted in a preference for this software program by health technology assessment agencies. However, SAS is a valid alternative for certain types of NMAs and constitutes a potential means to validate WinBUGS results.

REFERENCES

- Dias S, Welton NJ, Sutton AJ, Ades AE. Technical Support Document 2: a generalised 1. linear modelling framework for pairwise and network meta-analysis of randomised controlled trials. National Institute for Health and Care Excellence, Decision Support Unit. 2014. Available at: http://www.nicedsu.org.uk. Accessed 14 June 2016.
- 2. Jones B, Roger J, Lane PW, Lawton A, Fletcher C, Cappelleri JC, et al. Statistical approaches for conducting network meta-analysis in drug development. Pharm Stat. 2011 Nov-Dec;10(6):523-31.
- Dias S, Sutton AJ, Welton NJ, Ades AE. Technical Support Document 3: З. Heterogeneity: subgroups, meta-regression, bias and bias-adjustment. National Institute for Health and Care Excellence, Decision Support Unit. 2011. Available at: http://www.nicedsu.org.uk. Accessed 14 June 2016.
- 4. Stevenson M, Archer R, Tosh J, Simpson E, Everson-Hock E, Stevens J, et al. Adalimumab, etanercept, infliximab, certolizumab pegol, golimumab, tocilizumab and abatacept for the treatment of rheumatoid arthritis not previously treated with disease-modifying antirheumatic drugs and after the failure of conventional disease-modifying antirheumatic drugs only: systematic review and economic evaluation. Health Technol Assess. 2016 Apr;20(35):1-610.
- 5. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. 2004 Oct 30;23(20):3105-24.

CONTACT INFORMATION

1 2 3

Log-OR

Jean-Gabriel Le Moine, MSc **Research Statistician**

-3 -2 -1

RTI Health Solutions 2nd Floor, The Pavilion **Towers Business Park** Wilmslow Road, Didsbury Manchester, M20 2LS, United Kingdom

Phone: +44 161 447 6020 E-mail: jglemoine@rti.org