

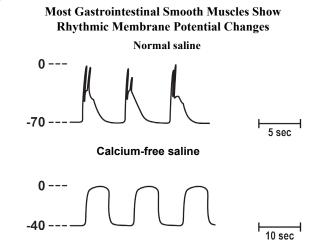
OMICS International

Emergence of a New Paradigm in Understanding the Cardiovascular System: Pulse Synchronized Contractions

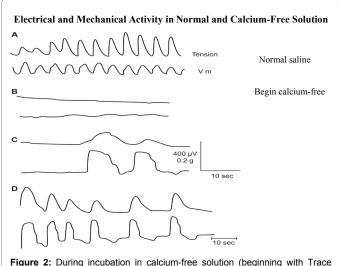
Mangel A* and Lothman K

RTI Health Solutions, USA

What We Will Show


- The large conduit arteries undergo rhythmic smooth muscle activation in synchrony with the cardiac cycle.
- The contractions are neurogenic and are denoted as pulse synchronized contractions (PSCs).
- PSCs are not a movement artifact from the pulse wave or heartbeat.
- The pacemaker for the PSCs is in the right atrium.
- The smooth muscle wall of large arteries can contract as fast as the heartbeat.

What Was Believed in Gastrointestinal Smooth Muscle


An increase in intracellular calcium activates contractions in muscle cells. Because smooth muscle cells are long, narrow-diameter cells, it was believed that an influx of calcium could serve as the sole source of activator calcium for contractions following changes in membrane potential. Therefore, no depolarization-mediated release of intracellularly stored calcium occurred (Figures 1-3).

Windkessel Hypothesis: Otto Frank

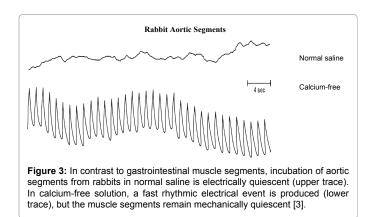

- The prevailing hypothesis describing the behavior of the smooth muscle wall of the large arteries is that the wall does not contract in synchrony with the cardiac cycle but, rather, behaves as a passive elastic tube being rhythmically distended by pulsatile pressure changes. Neural input may modulate tone.
- Thus, it was believed that there was no vascular smooth muscle rhythmicity in synchrony with the cardiac cycle [4].

Figure 1: Slow waves with spikes (upper trace) are the recognized trigger for contractions in the gastrointestinal tract. Following incubation in calcium-free saline, an alternative rhythmicity develops (lower trace) [1,2].

B), an alternative electrical activity with contractions develops [1,2]. Since contractions are observed in Traces C and D calcium release is occurring.

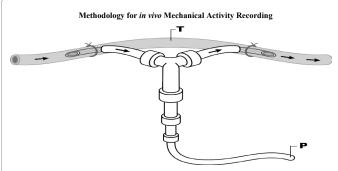
*Corresponding author: Allen Mangel, RTI Health Solutions, 200 Park Offices Drive, PO Box 12194, Research Triangle Park, NC 27709-2194, USA, Tel: +1-919-485-5668; Fax: +1-919-541-1275; E-mail: amangel@rti.org

Received August 26, 2017; Accepted September 12, 2017; Published September 19, 2017

Citation: Mangel A, Lothman K (2017) Emergence of a New Paradigm in Understanding the Cardiovascular System: Pulse Synchronized Contractions. Cardiovasc Pharm Open Access 6: 220. doi: 10.4172/2329-6607.1000220

Copyright: © 2017 Mangel A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Proponents of the Windkessel Hypothesis Have Ignored


- Heyman, in a series of studies in man and dog that were published between 1955 and 1961 [5-8], showed:
 - » Extra-arterially recorded brachial pulses sometimes preceded intra-arterial pulses, suggesting arterial diameter varies in advance of pressure changes during the cardiac cycle.
 - » The difference between the extra-arterially recorded and intra-arterially recorded pulse waves was abolished by stellate ganglion block, suggesting a neurally mediated event.
 - » It was concluded that: "the behaviour of the artery in the pulse is contradictory to principles of passive elasticity but seem to provide evidence of active participation of the arterial wall...."
 - » This series of papers has been largely ignored.

Hypothesis

Based on the ability of the aortic smooth muscle wall to generate fast rhythmic electrical activity in calcium-free solution (Figure 3), we sought to determine if the aortic smooth muscle wall could potentially show fast rhythmic contractile activity *in vivo* (Figures 4 and 5).

Considerable Effort Was Expended Proving PSCs Were Not Due to a Mechanical Artifact

- Eliminate pulse wave (Figures 6 and 7)
- Eliminate cardiac contractility (Figures 6 and 7)
- Dispel prejudice that smooth muscle cannot "contract that fast" (Figure 8)

Figure 4: Recording technique for measurement of contractile activity in the *in vivo* rabbit aorta. Configuration represents a segment of aorta having blood flow bypassed and tension (T) recorded from the bypassed segment. Pulse pressure changes (P) were recorded from the non-bypassed segment [9,10].

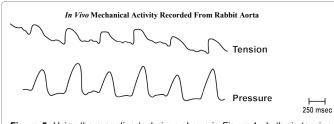


Figure 5: Using the recording technique shown in Figure 4, rhythmic tension changes (pulse synchronized contractions [PSCs]) were recorded with a 1:1 correspondence to the pulse wave [9-12].

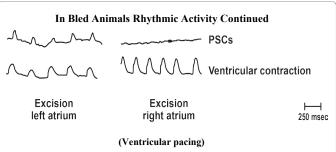
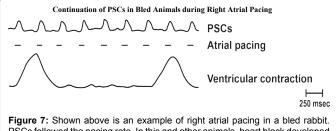
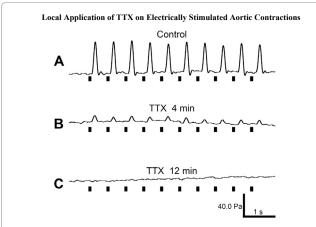



Figure 6: Following bleeding of rabbits, PSCs continued. In this configuration, ventricular muscle contractions were also recorded and pacing of the ventricles occurred. These studies (a) eliminated the pulse wave as an artifact, as animals were bled; (b) eliminated cardiac contractions as an artifact, as following excision of the right atrium with ventricular contractions paced to supra baseline levels, PSCs were not produced; and (c) suggested the PSC pacemaker is in the right atrium as excision of the right, but not left atrium, abolished PSCs [9].

PSCs followed the pacing rate. In this and other animals, heart block developed with corresponding large amplitude ventricular contractions. This experiment supports both the pacemaker for PSCs residing in the right atrium and that PSCs are not secondary to a movement artifact from the heart [9].

Vessels Where PSCs Have Been Observed

Species	Vessel
Dog	Coronary, femoral, carotid arteries
Rabbit	Aorta
Cat	Pulmonary artery
Rat	Aorta
Human	Brachial artery


From references [5-13].

PSCs

To evaluate whether the arterial smooth muscle wall is capable of contracting at the frequency of the heartbeat, electrical stimulation of the aorta *in vivo* was performed (Figure 8).

Conclusion

- The smooth muscle wall of the large arteries is capable of undergoing rapid contractions (PSCs) at the rate of the heartbeat.
- The contractions are neurogenic in origin as evidenced by blockade by TTX or lidocaine [references 9-13] and are not secondary to movement artifacts from the pulse wave or heartbeat.
- The pacemaker for the PSCs is in the right atrium.
- Direct electrical stimulation of the nerves within the aorta yields similar contractile activity.

Figure 8: Electrical stimulation of the rat aorta *in vivo* produced contractions similar to PSCs. As PSCs are, these contractions were eliminated by the neural blocker tetrodotoxin (TTX). Black bars represent timing of stimulation [13].

- PSCs represent a modified platform to understand the etiology of cardiovascular diseases allowing for the development of new therapeutic targets.
- PSCs have been recently reviewed [14,15].

References

- Mangel AW, Nelson DO, Connor JA, Prosser CL (1979) Contractions of cat small intestinal smooth muscle in calcium free solution. Nature 281: 582-583.
- Mangel A, Nelson DO, Rabovsky JL, Prosser CL, Connor JA (1982) Depolarization induced contractile activity of smooth muscle in calcium free

solution. Am J Physiol 242: 36-40.

- Mangel A, van Breemen C (1981) Rhythmic electrical activityin rabbit aorta induced by EGTA. J Exp Biol 90: 339-342.
- Frank O (1990) The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899. J Mol Cell Cardiol 22: 255-277.
- Heyman F (1955) Movements of the arterial wall connected with auricle systole seen in cases of atrioventricular heart block. Acta Med Scand 152: 91-96.
- Heyman F (1957) Comparison of intra-arterially and extra-arterially recorded pulse waves in man and dog. Acta Med Scan 157: 503-510.
- Heyman F (1959) Extra- and intra-arterial records of pulse waves and locally introduced pressure waves. Acta Med Scan 163: 473-475.
- Heyman F (1961) The arterial pulse as recorded longitudinally, radially and intra-arterially on the femoral artery of dogs. Acta Med Scan 170: 77-81.
- Mangel A, Fahim M, van Breemen C (1982) Control of vascular contractility by the cardiac pacemaker. Science 215: 1627-1629.
- 10. Mangel A, Fahim M, van Breemen C (1981) Rhythmic contractile activity of the in vivo rabbit aorta. Nature 289: 692-694.
- Mangel A, van Breemen C, Fahim M, Loutzenhiser R (1983) Measurement of in vivo mechanical activity and extracellular CA45 exchange in arterial smooth muscle. In: Bevan JA editor. Vascular Neuroeffector Mechanisms 4: 347-351.
- Ravi K, Fahim M (1987) Rhythmic contractile activity of the pulmonary artery studied in vivo in cats. J Autonom Nerv Sys 18: 33-37.
- Sahibzada N, Mangel AW, Tatge JE, Dretchen KL, Franz MR, et al. (2015) Rhythmic aortic contractions induced by electrical stimulation in vivo in the rat. PLoS One 10: e0130255.
- Mangel AW (2014) Does the aortic smooth muscle wallundergo rhythmic contractions during the cardiac cycle. Exper Clinical Cardiol 20: 6844-6851.
- Mangel AW (2017) A changing paradigm for understanding the behavior of the cardiovascular system. J Clin Exp Cardiol 8: 496.

Citation: Mangel A, Lothman K (2017) Emergence of a New Paradigm in Understanding the Cardiovascular System: Pulse Synchronized Contractions. Cardiovasc Pharm Open Access 6: 220. doi: 10.4172/2329-6607.1000220

Page 3 of 3