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Abstract

Background: While there is evidence that maternal exposure to benzene is associated with spina bifida in
offspring, to our knowledge there have been no assessments to evaluate the role of multiple hazardous air
pollutants (HAPs) simultaneously on the risk of this relatively common birth defect. In the current study, we
evaluated the association between maternal exposure to HAPs identified by the United States Environmental
Protection Agency (U.S. EPA) and spina bifida in offspring using hierarchical Bayesian modeling that includes
Stochastic Search Variable Selection (SSVS).

Methods: The Texas Birth Defects Registry provided data on spina bifida cases delivered between 1999 and 2004.
The control group was a random sample of unaffected live births, frequency matched to cases on year of birth.
Census tract-level estimates of annual HAP levels were obtained from the U.S. EPA’s 1999 Assessment System for
Population Exposure Nationwide. Using the distribution among controls, exposure was categorized as high
exposure (>95th percentile), medium exposure (5th-95th percentile), and low exposure (<5th percentile, reference).
We used hierarchical Bayesian logistic regression models with SSVS to evaluate the association between HAPs and
spina bifida by computing an odds ratio (OR) for each HAP using the posterior mean, and a 95% credible interval
(CI) using the 2.5th and 97.5th quantiles of the posterior samples. Based on previous assessments, any pollutant with
a Bayes factor greater than 1 was selected for inclusion in a final model.

Results: Twenty-five HAPs were selected in the final analysis to represent “bins” of highly correlated HAPs (ρ > 0.80).
We identified two out of 25 HAPs with a Bayes factor greater than 1: quinoline (ORhigh = 2.06, 95% CI: 1.11-3.87,
Bayes factor = 1.01) and trichloroethylene (ORmedium = 2.00, 95% CI: 1.14-3.61, Bayes factor = 3.79).

Conclusions: Overall there is evidence that quinoline and trichloroethylene may be significant contributors to the
risk of spina bifida. Additionally, the use of Bayesian hierarchical models with SSVS is an alternative approach in the
evaluation of multiple environmental pollutants on disease risk. This approach can be easily extended to
environmental exposures, where novel approaches are needed in the context of multi-pollutant modeling.
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Background
Birth defects affect approximately 6% of births world-
wide [1]. In the United States (U.S.), birth defects are the
leading cause of pediatric hospitalizations [2], medical
expenditures [3], and death in the first year of life [4].
Neural tube defects (NTDs), one of the most common
groups of birth defects, are complex malformations of
the central nervous system that result from failure of
neural tube closure [1]. One of the most common NTDs
is spina bifida. Infants with spina bifida experience both
increased morbidity and mortality compared to their un-
affected contemporaries [5,6]. Although these defects are
clinically significant, little is known about their etiology.
However, there is growing evidence that these conditions
are associated with maternal exposure to environmental
toxicants [7].
The U.S. Clean Air Act of 1990 classified 188 environ-

mental toxicants as air toxics or hazardous air pollutants
(HAPs). In 1999, the United States Environmental Pro-
tection Agency (U.S. EPA) went on to identify 33 HAPs
that present the greatest threat to public health [8]. In-
cluded in this list are: aromatic solvents (e.g., benzene),
chlorinated solvents (e.g., methylene chloride) and me-
tals (e.g., nickel compounds). HAPs are a particularly
important group of environmental toxicants because: 1)
they are known or suspected to cause a range of adverse
health outcomes [9]; 2) their levels are increasing in
communities throughout the U.S. [10-12]; and 3) there
are currently no national air quality standards for HAPs,
as there are for the criteria air pollutants (e.g., carbon
monoxide and ozone) [13].
While there is evidence that maternal exposure to

benzene is associated with spina bifida in offspring [14],
to our knowledge there have been no assessments to
evaluate the role of multiple HAPs simultaneously on
the risk of spina bifida or other birth defects. When sim-
ultaneously evaluating multiple predictors for disease
outcome, current methods focus on building multiva-
riable models, rather than the evaluation of single expo-
sures adjusting for known covariates [15]. Yet traditional
stepwise methods for model selection using statistics
computed at each step can lead to biased estimates [15].
Bayesian variable selection techniques, such as stochastic
search methods, offer a solution to this problem. Specif-
ically, stochastic search methods include model selection
uncertainty in the model building process to provide
more comprehensive information regarding important
predictors [16-18]. These stochastic search methods, also
considered a Bayesian hierarchical mixture model, can
jointly model multiple factors while including estimates
of uncertainty to balance power and false discovery
control [18,19]. Specifically, simulations have shown that
priors can be selected such that the evidence of a correct
association is higher for stochastic search methods
compared to stepwise regression methods when selecting
a model [18]. Stochastic search methods also perform well
in situations with correlated predictors (r2 ≈ 0.25-0.80)
[17-20]. As a result, stochastic search variable selection
methods have been successfully employed when inves-
tigating complex diseases, especially when assessing mul-
tiple genetic predictors [21,22]. In the current study, we
evaluated the association between maternal exposure to
the 33 HAPs identified by the U.S. EPA and spina bifida in
offspring using hierarchical Bayesian modeling that in-
cludes stochastic search.
Methods
Study population
The study population has been described previously
[14]. Briefly, data on live births, stillbirths, and electively
terminated fetuses with NTDs (including spina bifida)
delivered between January 1, 1999 and December 31,
2004 were obtained from the Texas Birth Defects Registry
(n = 1,108). The registry is a population-based, active
surveillance system that has monitored births, fetal
deaths, and terminations throughout the state since
1999. A stratified random sample of unaffected live
births delivered in Texas between January 1, 1999 and
December 31, 2004 was selected as the control group
using a ratio of 4 controls to 1 case. Controls were fre-
quency matched to cases by year of birth due to the
decreasing birth prevalence of NTDs over time [23].
This yielded a group of 4,132 controls. The study pro-
tocol was reviewed and approved by the Institutional
Review Boards of the Texas Department of State Health
Services, The University of Texas Health Science Center
at Houston, and Baylor College of Medicine.
Exposure assessment
Census tract-level estimates of ambient HAP con-
centrations were obtained from the U.S. EPA’s 1999
Assessment System for Population Exposure Nationwide
(ASPEN) [24-26]. The methods used for ASPEN have
been described fully elsewhere [25,26]. Briefly, ASPEN is
part of the National Air Toxic Assessment [12] and is
based on the U.S. EPA’s Industrial Source Complex Long
Term Model. It takes into account emissions data, rate,
location, and height of pollutant release; meteorological
conditions; and the reactive decay, deposition, and trans-
formation of pollutants. Ambient air levels of HAPs are
reported as annual concentrations in μg/m3 [26]. Resi-
dential HAP levels were estimated based on maternal
address at delivery as reported on vital records for cases
and controls. Addresses were geocoded and mapped to
their respective census tracts by the Texas Department
of State Health Services. Our data included mothers
from 2,381 census tracts.
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Covariates
The following covariates were selected a priori [14,27-31]
as potential confounders and were obtained or calculated
from vital records data: infant sex; year of birth; maternal
race/ethnicity (non-Hispanic white, non-Hispanic black,
Hispanic, or other); maternal birth place (U.S., Mexico, or
other); maternal age (<20, 20–24, 25–29, 30–34, 35–39,
or ≥40 years); maternal education (<high school, high
school, or > high school); marital status (married or not
married); parity (0, 1, 2, or ≥3); maternal smoking (no or
yes); and season of conception (spring, summer, fall, or
winter). Additionally, as the exposure assessment was
based on census tract-level estimates, we opted to include
a census tract-level estimate of socioeconomic status
(percent of households below the poverty level), which
was obtained from the U.S. Census 2000 Summary File 3.
The percent of households in each census tract below the
poverty level was categorized into quartiles (low, medium-
low, medium-high, and high poverty level), based on the
distribution among the controls.

Statistical analysis
Descriptive statistics included distributional characteris-
tics of the 33 HAPs and frequency distributions for
demographic variables stratified on case–control status.
Differences in the distribution of categorical variables
between cases and controls were determined using chi-
squared tests where P < 0.05. Correlations between HAPs
were determined using Spearman’s rank correlation.
Because SVSS is most appropriate when variables are
correlated (i.e., ρ = 0.25-0.80) but not highly correlated
(i.e., ρ > 0.80), we grouped (or “binned”) HAPs with high
correlation (i.e., ρ > 0.80) and selected pollutants to repre-
sent a given bin based on existing science and correlations
with the other HAPs within the bin. Omitting variables
based on correlation and existing scientific evidence is a
reasonable approach to reduce multicollinearity [32]. To
bin the HAPs, we used an algorithm based on correlation
that is commonly used in genetic association studies [33].
Once the bins were defined, we selected HAPs within the
bins to either best represent the bin (maximum cor-
relation with other HAPS), or a combination of highest
correlation and existing evidence of association with birth
defects.
Two primary association analyses were conducted.

First, we examined the association between maternal
exposure to each HAP individually and spina bifida in
offspring, adjusting for year of birth, maternal education,
maternal race/ethnicity, maternal smoking, and census
tract poverty status [14] using Bayesian hierarchical logis-
tic regression. Second, we performed a multi-pollutant
analysis using Bayesian hierarchical logistic regression
combined with Stochastic Search Variable Selection
(SSVS) to jointly investigate all HAPs while adjusting for
the same covariates. The Bayesian hierarchical model can
be interpreted as a mixed-effects logistic model as it pro-
vides a fixed-effect for the association between maternal
exposure to each HAP and spina bifida in offspring, as
well as a random intercept to account for the within-
group correlation resulting from the use of a census tract-
level exposure assignment [34]. SSVS adds a coherent data
driven probabilistic framework to search through the fixed
effects and identify potentially important associations
[16-18,35]. Additionally, the simultaneous inference of
multiple HAPs in a Bayesian framework is not affected by
multiple comparisons in the same way as in a frequentist
framework, and can easily be accommodated using an ap-
propriate prior [36,37]. For a comparison to SSVS, we also
performed a standard hierarchical Bayesian model without
selection, assessing the HAPs simultaneously.
We categorized the HAPs into three categories based

on their distribution among the controls: high exposure
(above the 95th percentile of controls), medium exposure
(between the 5th percentile to 95th percentile of con-
trols), and low exposure (below the 5th percentile, used
as the reference) [14,38]. As a sensitivity analysis to our
categorization, the Bayesian analysis was repeated mo-
deling each HAP as a continuous measure. Due to the
large variation in concentrations across all HAPs, we
centered and standardized each pollutant.
Prior Distributions: For the individual pollutant ana-

lysis, we used a hierarchical prior for the random inter-
cept based on previously established methods [34].
Specifically, the random intercept was given a normal
prior distribution with mean of 0, and the standard
deviation component for the random intercept was given
a uniform hyper prior on the range of 0 to 3. The priors
for the covariate fixed effects were normally distributed
with a mean of 0 and variance of 10. In the context of
logistic regression, these priors are considered non-
informative. In the multi-pollutant model with SSVS, we
used the same priors for the random and fixed parame-
ters for the covariates. For the parameters corresponding
to the HAPs, we assumed a mixture prior for SSVS [18].
This mixture involves a normal distribution with mean 0
and variance 0.001 if the variable was not selected, and a
normal prior with mean 0 and variance 10 if the variable
was selected. Through selection of 0.001 as the variance
for the prior when the variable was not selected, the null
OR is defined as being in the interval from 0.97 to 1.03
with a 99% probability. In other words, we consider an
OR in this interval to not be meaningfully different from
a null association [19]. We set the prior probability of
inclusion for each variable to 0.25, and sensitivity ana-
lyses were conducted using a prior probability of inclu-
sion of 0.50. These settings for prior probabilities for
inclusion have been shown to have a good balance
between power and false positives [18]. Each covariate
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(including those that were categorized) had an inde-
pendent mixture prior.
Model Estimation and Selection: We estimated the pos-

terior distributions of the hierarchical Bayesian models
using Markov chain Monte Carlo (MCMC) methods. For
the single pollutant analyses, we computed an OR for each
pollutant using the posterior mean, and a 95% credible
interval (CI) using the 2.5th and 97.5th quantiles of the
posterior samples [39]. For the multi-pollutant model
using SSVS, we computed the marginal Bayes factor for
each pollutant [40]. In brief, the marginal Bayes factor is a
ratio of the prior odds to the posterior odds that sum-
marizes the evidence for selection of each variable, given
the data. Therefore, any Bayes factor greater than 1
implies some evidence for inclusion in the model, with
values much greater than 1 representing stronger evidence
[41,42]. We included those HAPs with a marginal Bayes
factor greater than 1 in a joint model, computed the joint
posterior distribution of the selected model through
MCMC, and computed the OR and 95% CI for the joint
model using the posterior mean and quantiles of the beta
coefficients as described. For categorical covariates, if
either high or medium were selected, we considered both
as selected for final model estimation. For all MCMC
computations, we simulated two chains with separate
initial values, each consisting of 150,000 iterations. We
discarded the first 50% of each chain as burn in to allow
the chain to converge to the posterior distribution. We
assessed convergence through how well the posterior
means for all parameters correlated between the two
chains. We considered a correlation higher than 0.95 indi-
cating that the chains had sufficiently converged. Once
convergence was determined to be adequate, we pooled
the retained iterations to compute our estimates of the
OR and 95% CI. All MCMC computations were per-
formed using WinBUGS 1.4 [43], and posterior inference
was performed using R (64 bit v. 3.0.2).

Results
The distributional characteristics of 32 of the 33 U.S.
EPA-designated HAPs based on the 1999 ASPEN model
are presented in Table 1. Coke oven emissions, which
were included in the list of 33, were not estimated for
Texas in the 1999 ASPEN model. There were four
groups of highly correlated HAPs (Table 2). As noted,
we identified one or two HAPs from each group to rep-
resent that “bin” of HAPs based on selection criteria
used in genetic association studies for highly correlated
single nucleotide polymorphisms [33]. Specifically, ben-
zene and methylene chloride were selected to represent
the highly correlated group consisting of acetaldehyde,
acrolein, and formaldehyde, benzene and methylene
chloride. 1,1,2,2-Tetrachloroethane was selected to rep-
resent the highly correlated group including ethylene
dibromide, propylene dichloride, and 1,1,2,2-tetrachloro-
ethane. Vinyl chloride was selected to represent the
highly correlated group including ethylene dichloride
and vinyl chloride. Diesel particulate matter was selected
to represent the highly correlated group consisting of
diesel particulate matter and nickel compounds. After ap-
plying these criteria, 25 HAPs remained in our analysis.
To minimize etiologic heterogeneity within the case

group, cases with an associated chromosomal abnorma-
lity or other syndrome (n = 75), those with a closed de-
fect (i.e., lipomyelomeningocele, n = 88), and those with
anencephaly (n = 351) were excluded. Cases with missing
geocoded maternal address were excluded (n = 61). After
these exclusions, 533 spina bifida cases were available
for analysis. Of the 4,132 controls, 437 were excluded
due to missing geocoded maternal address. The final
control group consisted of 3,695 unaffected births for
analysis. The proportion of case and control mothers
missing address information was similar (11.4% and
10.5%, respectively), and there were no significant diffe-
rences on demographic factors between those with and
without a maternal address at delivery. The characte-
ristics of cases and controls are presented in Table 3.
Mothers of spina bifida cases were more likely to be
Hispanic and to have been born in Mexico compared to
mothers of controls (p = 0.003 and p = 0.05, respectively).
Additionally, mothers of cases were more likely to live in
census tracts with higher poverty levels (p = 0.02). Cases
and controls did not significantly differ on other demo-
graphic characteristics.
When evaluating the association between the 32

HAPs and spina bifida in single-pollutant models, 14 of
the 32 (44%) had 95% CIs excluding 1.0 for either the
medium or high exposure categories (Additional file 1:
Table S1). Based on the multi-pollutant analysis among
the 25 HAPs, when computing the marginal Bayes
factors from the SSVS posterior, we identified two with
a Bayes factor greater than or 1 (Table 4): quinoline
(ORhigh = 2.06, 95% CI: 1.11-3.87, Bayes factor = 1.01);
and trichloroethylene (ORmedium = 2.00, 95% CI: 1.14-
3.61, Bayes factor = 3.79). These associations are stron-
ger than those of the covariates (Additional file 1:
Table S2), while the 95% CIs are of similar width. The
unadjusted ORs overestimate these effects due to un-
controlled confounding (Additional file 1: Table S3). For
comparison, the joint model without SSVS only iden-
tified the medium level of Trichloroethylene as asso-
ciated with spina bifida (OR = 5.72, 95% CI: 1.44-24.16,
Additional file 1: Table S4). The sensitivity analysis
using a prior probability of 0.50 yielded similar results
(data not shown). Our analysis using HAPs on the con-
tinuous scale selected eight HAPs with a Bayes factor
greater than 1, however, all of the 95% CIs included 1.0
(data not shown).



Table 1 Distributional characteristics of hazardous air pollutants (μg/m3) based on the 1999 U.S. EPA ASPEN Model,
Texas

Pollutant Mean Median 5th percentile 25th percentile 75th percentile 95th percentile

Acetaldehyde 1.50 1.45 0.62 0.86 1.93 2.97

Acrolein 0.11 0.09 0.01 0.04 0.14 0.32

Acrylonitrile 4.08 × 10−03 1.80 × 10−04 4.18 × 10−06 4.00 × 10−05 7.80 × 10−04 2.41 × 10−02

Arsenic compounds 6.00 × 10−05 2.00 × 10−05 1.18 × 10−06 1.00 × 10−05 5.00 × 10−05 1.40 × 10−04

Benzene 1.40 1.26 0.45 0.85 1.73 2.83

Beryllium compounds 1.00 × 10−05 1.00 × 10−05 4.53 × 10−07 2.06 × 10−06 1.00 × 10−05 2.00 × 10−05

1,3-Butadiene 0.13 0.12 0.01 0.07 0.17 0.30

Cadmium compounds 1.00 × 10−04 2.00 × 10−05 8.08 × 10−07 4.52 × 10−06 5.00 × 10−05 2.20 × 10−04

Carbon tetrachloride 0.28 0.27 0.27 0.27 0.27 0.29

Chloroform 0.08 0.07 0.04 0.05 0.09 0.16

Chromium VI 3.40 × 10−04 7.00 × 10−05 2.65 × 10−06 2.00 × 10−05 2.10 × 10−04 1.42 × 10−03

1,3-Dichloropropene 0.08 0.07 0.01 0.04 0.11 0.17

Diesel particulate matter 1.18 0.97 0.28 0.53 1.42 2.81

Ethylene oxide 1.19 × 10−02 8.25 × 10−03 7.80 × 10−04 4.35 × 10−03 1.42 × 10−02 3.38 × 10−02

Ethylene dibromide 2.57 × 10−02 2.98 × 10−02 4.00 × 10−04 1.93 × 10−02 3.58 × 10−02 3.73 × 10−02

Ethylene dichloride 0.05 0.05 0.01 0.03 0.05 0.10

Formaldehyde 1.60 1.57 0.55 1.02 2.01 2.97

Hexachlorobenzene 3.00 × 10−05 4.15 × 10−07 1.08 × 10−07 2.38 × 10−07 1.08 × 10−06 6.00 × 10−06

Hydrazine 1.00 × 10−05 2.74 × 10−09 2.88 × 10−15 2.31 × 10−10 6.14 × 10−08 4.00 × 10−05

Lead compounds 2.49 × 10−03 1.73 × 10−03 7.00 × 10−05 4.90 × 10−04 3.07 × 10−03 7.02 × 10−03

Manganese compounds 1.50 × 10−03 6.40 × 10−04 1.00 × 10−05 1.00 × 10−04 1.37 × 10−03 4.60 × 10−03

Mercury compounds 1.63 × 10−03 1.52 × 10−03 1.50 × 10−03 1.51 × 10−03 1.57 × 10−03 1.99 × 10−03

Methylene chloride 0.49 0.48 0.11 0.33 0.63 0.88

Nickel compounds 7.30 × 10−04 4.10 × 10−04 2.00 × 10−05 1.30 × 10−04 8.00 × 10−04 2.39 × 10−03

Polychlorinated biphenyls 4.00 × 10−04 3.90 × 10−04 3.80 × 10−04 3.80 × 10−04 4.00 × 10−04 4.70 × 10−04

Perchloroethylene 0.20 0.20 0.02 0.12 0.27 0.38

Polycyclic Organic Matter 7.73 × 10−03 6.58 × 10−03 1.55 × 10−03 4.07 × 10−03 9.63 × 10−03 1.78 × 10−02

Propylene Dichloride 2.15 × 10−02 2.42 × 10−02 6.64 × 10−03 1.80 × 10−02 2.77 × 10−02 2.80 × 10−02

Quinoline 1.00 × 10−05 2.70 × 10−08 9.65 × 10−14 4.92 × 10−09 2.92 × 10−07 2.00 × 10−05

1,1,2,2-Tetrachloroethane 0.06 0.07 0.02 0.05 0.08 0.08

Trichloroethylene 0.10 0.09 0.05 0.07 0.11 0.16

Vinyl chloride 6.42 × 10−02 6.60 × 10−02 1.04 × 10−03 4.36 × 10−02 7.93 × 10−02 1.19 × 10−01
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Discussion
To our knowledge, this is the first application of a
Bayesian variable selection strategy to evaluate the role
of multiple HAPs simultaneously on the risk of birth
defects. Overall there is evidence that HAPs may be a
significant contributor to the risk of spina bifida. Spe-
cifically, in single-pollutant models, a large proportion of
HAPs (44%) were positively associated with spina bifida.
Additionally, using a Bayesian hierarchical approach
with SSVS as a multi-pollutant model, we found two
HAPs that were associated with spina bifida: quinoline
and trichloroethylene. Mothers who lived in census
tracts with high quinolone levels or medium trichloro-
ethylene levels were approximately two times as likely to
have a child with spina bifida compared to mothers who
lived in census tracts with relatively low levels. The
effect estimate for mothers living in census tracts with
high levels of trichloroethylene was smaller (OR = 1.32)
in comparison to the effect estimate for medium levels
(OR = 2.00). This inverted U-shaped dose–response rela-
tionship is common among toxicants that act as endo-
crine disruptors such as trichloroethylene [44-47].
The mechanism by which HAPs may lead to teratoge-

nesis is unknown. However, certain HAPs (e.g., benzene,



Table 2 Hazardous air pollutants with correlations greater than ρ > 0.80, Texas, 1999

Pollutant Acet Acro Form Benz MCl EDbr PD TCE EDcl VCl DPM Ni

Acet 1.00 0.97 0.98 0.85 0.79

Acro 0.97 1.00 0.95 0.81 0.68

Form 0.98 0.95 1.00 0.89 0.82

Benz1 0.85 0.81 0.89 1.00 0.74

MCl1 0.79 0.68 0.82 0.74 1.00

EDbr 1.00 0.98 1.00

PD 0.98 1.00 0.99

TCE2 1.00 0.99 1.00

EDcl 1.00 0.98

VCl3 0.98 1.00

DPM4 1.00 0.87

Ni 0.87 1.00

*Abbreviations: Acet acetaldyhyde, Acro acrolein, Form formaldehyde, Benz benzene, MCl methylene chloride, EDbr ethylene dibromide, PD propylene dichloride,
TCE 1,1,2,2-Tetrachloroethane, EDcl ethylene dichloride, VCl vinyl chloride, DPM diesel particulate matter, Ni nickel compounds.
1Benzene and methylene chloride selected to represent the highly correlated group including acetaldehyde, acrolein and formaldehyde.
21,1,2,2-Tetrachloroethane selected to represent the highly correlated group including ethylene dibromide and propylene dichloride.
3Vinyl Chloride selected to represent the highly correlated group including ethylene dichloride.
4Diesel particulate matter selected to represent the highly correlated group including nickel compounds.
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polycyclic aromatic hydrocarbons) are known to cross the
placenta and have been found in cord blood at levels equal
to or higher than maternal blood [48]. Potential me-
chanisms by which HAPs may influence the risk of spina
bifida include genetic toxicity and oxidative stress. In fact,
these mechanisms may interact to contribute to teratogen-
esis. Specifically, certain HAPs (e.g., polycyclic aromatic
hydrocarbons) can lead to genetic toxicity by covalently
binding to DNA. The resulting DNA adducts, if not re-
paired, are mutagenic, resulting in the disruption of the
cell’s microenvironment, which leads to inhibition of im-
portant enzymes, cell death, and alteration of other cells
[49]. If this occurs during the critical window of embryonic
development, the complex cellular processes involved in
development may be disturbed, leading to spina bifida.
Several HAPs (e.g., benzene, toluene) can also form free
radicals known as reactive oxygen species (ROS) [9],
which may lead to oxidative stress. These ROS can cause
DNA strand breakage or fragmentation leading to cell
mutation [49]. The importance of oxidative stress as a
mechanism of teratogenesis is suggested by several animal
studies [50-55].
Quinoline is a coal tar constituent and is the major tar

base in creosote [56]. In mouse models, maternal expos-
ure to quinoline has been shown to induce skeletal and
visceral malformations in offspring [57]. Other studies
indicate quinoline may cross the placenta into the tissue
of the developing fetus [56]. However, to our knowledge,
there have been no studies evaluating the association
between human maternal exposure to quinoline and the
risk of spina bifida or other birth defects, suggesting
more work is needed on the potential teratogenicity of
this agent.
Most of the trichloroethylene used in the U.S. is re-

leased into the atmosphere from industrial degreasing
operations [58]. While there is evidence from both
animal and human studies that trichloroethylene is asso-
ciated with birth defects, specifically congenital heart
defects [59-61], there is ongoing debate over the terato-
genicity of this pollutant [62]. An evaluation using data
from Camp Lejeune, North Carolina indicated that mothers
exposed to higher levels of trichloroethylene were 2.4
times (95% CI: 0.6-9.6) as likely to have offspring with
NTDs compared to those exposed to lower levels [63].
While this association was not statistically significant, the
strength of the association was similar to that in our
assessment.
While maternal exposure to benzene was associated

with spina bifida in the single-pollutant model, it was
not selected as a final variable in the multi-pollutant
model. The effect estimate for benzene from the single-
pollutant Bayesian model for the highly exposed group
(OR = 1.99) was similar to that from the previous assess-
ment (OR = 2.30) [14]. The absence of benzene from the
final model may be due to multiple factors including:
1) high correlation (ρ > 0.80) with several other HAPs
and 2) the estimate of effect was not as strong as other
HAPs in the final multi-pollutant model.
Our study must be considered in the light of certain

limitations. One potential limitation is the use of mo-
deled predictions of ambient air concentrations of HAPs
(i.e., the ASPEN model), which may have resulted in



Table 3 Characteristics of spina bifida cases and controls,
Texas, 1999-2004

Characteristic Controls Cases P-value

N = 3,695 N = 533

Sex of infant

Female 1,828 (49.5) 251 (47.3) 0.34

Male 1,867 (50.5) 280 (52.7)

Maternal race/ethnicity

Non-Hispanic white 1,344 (36.5) 191 (36.0) <0.01

Non-Hispanic black 430 (11.7) 54 (10.2)

Hispanic 1,773 (48.1) 280 (52.8)

Other 138 (3.7) 5 (0.9)

Maternal birthplace

United States 2,592 (70.4) 355 (67.4) 0.05

Mexico 785 (21.3) 145 (27.5)

Other 306 (8.3) 27 (5.1)

Maternal age (years)

<20 501 (13.6) 76 (14.3) 0.32

20-24 1,099 (29.7) 158 (29.6)

25-29 966 (26.1) 141 (26.5)

30-34 754 (20.4) 119 (22.3)

35-39 323 (8.7) 31 (5.8)

≥40 52 (1.4) 8 (1.5)

Maternal education

<High school 1,155 (31.7) 188 (36.4) 0.06

High school 1,195 (32.8) 169 (32.7)

>High school 1,292 (35.5) 160 (30.9)

Parity

0 1,314 (36.9) 190 (37.7) 0.79

1 1,170 (32.9) 157 (31.2)

2 679 (19.1) 95 (18.8)

≥3 396 (11.1) 62 (12.3)

Maternal smoking

No 3,447 (93.9) 505 (95.5) 0.15

Yes 225 (6.1) 24 (4.5)

Census tract poverty level

Low 922 (25.0) 100 (18.8) 0.02

Medium-low 925 (25.0) 144 (27.0)

Medium-high 925 (25.0) 137 (25.7)

High 925 (25.0) 152 (28.5)

Season of conception

Spring 807 (24.0) 106 (22.5) 0.45

Summer 798 (23.7) 127 (27.0)

Fall 876 (26.0) 122 (25.9)

Winter 887 (26.3) 116 (24.6)
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exposure misclassification. However, there is no data
source that sufficiently addresses this issue. For instance,
personal monitoring is not available on a population
scale, and outdoor monitoring in Texas is restricted to
certain communities. Therefore, the use of ASPEN data
is a cost-effective approach in assessing this important
question. An additional potential limitation is the use of
ASPEN data from 1999 for the entire study period. It is
not recommended by the EPA to include ASPEN data
from multiple years simultaneously in one assessment.
However, relying on HAP estimates from 1999 alone
may be a suitable surrogate for other years as while
levels of HAPs are likely to change over time, the rela-
tive ranking of census tracts based on ambient levels of
HAPs was unlikely to change during the study period
[10,64,65]. Additionally, ASPEN data have been used in
several population-based assessments of adverse health
outcomes, including birth defects [14,65-68]. Lastly, in-
formation on address at conception was unavailable,
and, therefore, we were limited to basing the exposure
assignment on maternal address at delivery. However,
our previous work suggests that census tract-level ex-
posure assessment is not significantly different when
assessing HAP exposure using ASPEN data between the
time of conception and delivery [69].
Another potential limitation is the use of an area-

based (census tract-level) measure of HAP exposure.
Using area-based measures of exposure always assumes
some level of increased exposure misclassification, espe-
cially compared to individual-level measures. However,
using census-tract level exposure information, as was
used in this assessment, lessens the amount of potential
exposure misclassification compared to using county-
level information, which is commonly used in epidemio-
logic studies of environmental exposures [47,70-72]. In
addition, it is possible that the amount of exposure mis-
classification could vary by each HAP included in this
assessment, potentially introducing additional exposure
measurement error with a complex correlation structure,
all of which could bias the effect estimates towards the
null.
Another point to discuss is the correlation among

HAPs in our data. We chose a correlation binning tech-
nique commonly employed in statistical genetics to re-
duce the correlation of HAPS to be below 0.80 while
representing as much of the association information as
possible in the HAPs for the model [33]. Other methods
could have been used, such as binning pollutants on
chemical properties, or perhaps targeted source. How-
ever, since the statistical model assesses association
through correlations, defining bins of HAPs based on
correlation seems to be most congruent with the statis-
tical modeling approach. We added a scientific compo-
nent in our dimension reduction. Instead of purely using



Table 4 Hazardous air pollutants associated with spina bifida identified using Stochastic Search Variable Selection
(SSVS) with a Bayes factor greater than 1.00

Pollutant Pollutant range (μg/m3) Cases/Controls Odds ratio1 95% credible interval Bayes factor

Quinoline

Low <6.50 × 10−14 18/176 1.00 Ref.

Medium 6.50 × 10−14 - 1.71 × 10−5 434/3149 1.42 (0.87, 2.42) 0.32

High >1.71 × 10−5 39/178 2.06 (1.11, 3.87) 1.01

Trichloroethylene

Low <0.0524 13/176 1.00 Ref.

Medium 0.052 – 0.16 460/3151 2.00 (1.14, 3.61) 3.79

High >0.16 18/176 1.32 (0.61, 2.80) 0.60
1Adjusted for year of birth, maternal education, maternal race/ethnicity, maternal smoking, and census tract poverty status.
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statistics to define the representative of each bin, we
chose the representative HAPs for a bin based on
1) previously reported associations as well as 2) the level
of correlation of each HAP with the other HAPs in the
bin. This approach allowed for the combination of pre-
vious scientific evidence as well as statistics to represent
each bin.
Previous evidence suggests that SSVS may be prone to

favor false negative results [18,19]. Using a Bayes factor
threshold of greater than 1 usually reduces the number
of false negatives; however, even in the case of increased
false negatives, on average, SSVS methods are more
likely to generate correct associations compared to
standard selection methods [18].
Strengths of this study include the use of a population-

based birth defects registry that employs an active sur-
veillance system to ascertain cases throughout the state of
Texas. This should limit the potential for selection bias.
Furthermore, the Texas Birth Defects Registry includes in-
formation on pregnancy terminations reducing potential
bias due to the exclusion of these cases. An additional
strength was the use of a relatively small (census tract-
level) measure of exposure. Using larger geographic units
to estimate exposure (e.g., counties) may not capture the
spatial variability of HAPs [73].
An important aspect of this study was the Bayesian

hierarchical approach for evaluating multiple pollutants
while also accounting for the within-group correlation
resulting from the use of a census tract-level exposure
assignment through the random intercept [34]. Tra-
ditional models based on variable selection in a stepwise
approach can lead to biased estimates [15]. Bayesian
variable selection techniques (e.g., SVSS) offer an attrac-
tive alternative to multi-pollutant modeling. Specifically,
SSVS includes model selection uncertainty in the model
building process to provide more comprehensive infor-
mation regarding important predictors [16-18]. In our
assessment, the Bayesian hierarchical approach resulted
in the selection of two HAPs in the final multivariable
model; however, when modeling the association with
spina bifida in the single-pollutant models, we detected
14 HAPs with statistically significant associations with
spina bifida, some of which may be false positives. When
compared with the traditional single pollutant models,
the multivariable model reduces the number of detected
pollutants from 14 to two.
In conclusion, we believe the use of Bayesian hierarch-

ical models with SSVS provides a robust alternative in the
evaluation of multiple environmental pollutants on disease
risk as this approach allows the joint assessment of mul-
tiple factors while including estimates of uncertainty to
balance power and false discovery control [18]. Bayesian
methods have been reported to outperform conventional
maximum-likelihood-estimation techniques for prediction
and are useful in settings where multiple exposures are
evaluated [36,37]. Additionally, concerns about multiple
comparisons can be eliminated in the simultaneous as-
sessment of multiple HAPs within a Bayesian framework
[36,37]. Specifically, SSVS type methods may be prone to
favoring false negatives [18,19] (SIM and Devocht), mea-
ning that false positives due to multiple comparisions are
not an issue. This approach has been used successfully
when assessing the role of multiple genetic variants on
complex diseases [18,21,22,74], and can be easily extended
to environmental exposures, where novel approaches are
needed in the context of multi-pollutant modeling.
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