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Abstract

Comparisons of post relapse survival (PRS) and post progression survival have been used to 

measure efficacy in some cancer clinical trials. These comparisons are an attempt to account for 

second-line therapies and to identify benefits that do not translate in longer overall survival. 

However, the use of PRS comparisons can be misleading (either a longer or shorter PRS may 

indicate a benefit, depending on the circumstances) and can result in biased estimates (because of 

selection). Here we describe the problems surrounding PRS comparisons and propose alternative 

approaches to deal with non-randomized therapies administered after progression to the 

experimental treatment.
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Cancer trials of experimental therapies often use as the primary outcome overall survival—

time from randomization to death— or either disease-free survival (DFS)—time from 

randomization to the earliest of relapse or death—in the adjuvant setting or progression-free 

survival (PFS) —time from randomization to the earliest of tumor progression or death—in 

the advanced disease setting.

Post relapse survival (PRS)—time from relapse to death—or post-progression survival 

(PPS)—time from progression to death—is another outcome that has been reported in 

clinical trials1–5 and observational studies6,7 as a complement to overall survival and, 

occasionally, as the main result.1,3,5 Several pooled analyses of trials have studied the 
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correlation of PRS/PPS, also referred to as “post disease-free survival”2 and “treatment 

failure survival”,6 with PFS8–11 and overall survival.12–15

It has been argued that using PRS/PPS helps elucidate the survival benefit of new 

drugs,10,14,15 that PPS can be a better surrogate for overall survival than PFS,10 and that 

differences in PRS/PPS may explain why DFS/PFS benefits do not always translate into 

overall survival benefits.8,9,11 However, analyses that incorporate PRS/PPS may be 

misleading, biased, or both, as we describe below. For brevity, we focus on PRS, but the 

same reasoning applies to PPS.

The use of PRS as a complement to overall survival may be misleading

Consider a randomized trial that compares an experimental and a control adjuvant therapy in 

localized colon cancer. For simplicity, suppose that all patients relapse during the follow-up 

(below we discuss the more realistic setting in which not all patients relapse during the 

follow-up). The primary outcome is overall survival but investigators wish to add PRS to 

their analyses.

First, suppose that the experimental therapy has no effect on overall survival but increases 

time to relapse (Figure 1A). Because time to relapse plus PRS equals overall survival, the 

experimental arm must necessarily have a shorter PRS than the control arm. That is, a 

shorter PRS indicates a beneficial effect of the experimental treatment in postponing relapse. 

An example was a randomized trial in localized colon cancer2 that found a longer relapse-

free survival (hazard ratio: 0.72, 95% CI 0.41–0.92), but a shorter PRS (hazard ratio: 1.61, 

95% CI 1.06–2.46), for fluorouracil plus oxaliplatin versus control treatment in high-risk 

stage II colon cancer.

Second, suppose that the experimental therapy increases overall survival but does not affect 

the time to relapse16 (Figure 1B). Because time to relapse plus PRS equals overall survival, 

the experimental arm must necessarily have a longer PRS than the control arm. That is, a 

longer PRS indicates a beneficial effect of the experimental treatment because of longer 

survival after relapse.

These two simple examples show how misleading the PRS may be when taken in isolation. 

The experimental therapy may be superior to the control therapy whether it increases or 

decreases the PRS, depending on the effect of the experimental therapy on overall survival 

and time to relapse. PRS becomes even harder to interpret when the experimental therapy 

affects both overall survival and time to relapse (Figure 1C). For example, a phase III trial 

evaluating the addition of cetuximab to perioperative chemotherapy for the treatment of 

potentially operable colorectal liver metastases, reported both a shorter PFS and a shorter 

PPS for the experimental arm. Here a shorter PPS indicates a detrimental effect of the 

experimental treatment5.

In summary, even if all patients were observed to relapse during the follow-up, the 

difference in PRS between the experimental and the control groups is insufficient to decide 

which treatment provides a greater clinical benefit.
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The use of PRS may lead to biased estimates

In practice not all patients relapse during the follow-up. An analysis based on PRS is a 

subgroup analysis that includes only individuals who do relapse during the follow-up. 

However, the variable that defines the subgroup, time to relapse, is a post-randomization 

variable, and thus individuals in PRS analyses are selected based on a post-randomization 

variable. This selection may introduce bias17,18 because the individuals in the experimental 

and control arms may not be comparable after relapse even if they were comparable at 

baseline.

To see this, consider the following example. Suppose that, consistent with empirical findings 

in colon cancer,2 oxaliplatin-based adjuvant therapy increases the time to relapse but not 

overall survival compared with a control therapy. Also suppose there exist some prognostic 

factors (e.g., tumor-specific characteristics) with independent effects on relapse time and 

overall survival. For example, very aggressive tumors can produce early relapse and, 

independently, paraneoplasic syndromes (e.g., procoagulative status, cachexia-anorexia) that 

increase the risk of an early death. Other prognostic factors with effects on both relapse time 

and overall survival may include characteristics of the patients (e.g., overall health status, 

immune competence) and the health care delivery system (e.g., resources for cancer 

treatment and surveillance).

Now consider a PRS analysis that selects only individuals with a relapse during the follow-

up. This “relapsing population” is different from the one that was originally randomized. 

Specifically, it has a different distribution of risk factors than the original one because 

patients less susceptible to relapse are less likely to be included. Worse, relapsing 

individuals in the experimental and control arms may no longer be comparable: because 

individuals in the experimental arm are less likely to have a relapse than those in the control 

arm, it follows that individuals who relapse in the experimental arm have, on average, risk 

factors for relapse so strong than they can overcome the delaying effect of the experimental 

therapy. By restricting the analysis to relapsing individuals, those with the worst prognosis 

are selected for the experimental arm, whereas those who would normally relapse are 

selected for the control arm. That is, relapsing individuals in the experimental and control 

arms do not have a comparable risk profile. The causal diagram19 in Figure 2 represents this 

setting.

In summary, the benefits of randomization are lost when the analysis is restricted to those 

who relapse because, even if the therapy does not affect any patient’s overall survival, we 

might find a shorter PRS in relapsing individuals in the experimental arm compared with the 

control arm. Bias due to the selection of individuals with relatively worse prognosis in the 

experimental arm might invalidate the estimates.

Alternatives to PRS-supplemented analyses

Differences in overall survival between the experimental and control groups may be 

obscured by the use of non-randomized therapies after relapse or progression. The use of 

PRS is a flawed attempt to overcome this problem.
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Ideally, non-randomized therapies would be controlled by design. The protocol of cancer 

trials would specify fixed therapeutic strategies to be followed after relapse/progression (or 

would assign them randomly). For example, suppose we randomize patients with localized 

colon cancer to either (i) adjuvant 5-FU followed by oxaliplatin-based chemotherapy at 

progression, irinotecan-based chemotherapy +/− antiEGFR (depending on KRAS mutational 

status) as second line therapy and Regorafenib as third line therapy, or (ii) adjuvant 5-FU 

plus oxaliplatin (the experimental drug) followed by the same sequence of treatments. An 

intent-to-treat analysis of this trial would validly estimate the relative effect of assignment to 

oxaliplatin versus the control therapy on overall survival under the specified sequence of 

post-progression treatments.

However, if the above protocol cannot be implemented for practical reasons or if patients do 

not adhere to the specified sequence of treatments, an alternative is to statistically adjust for 

the use of non-randomized therapies. That is, one needs to treat the randomized trial partly 

as an observational study,20 to estimate the effect that would have been estimated if all 

patients had adhered to the protocol. Estimating these “per-protocol effect” requires two 

steps.

First, investigators need to record information on therapies received by the patients after 

relapse/progression, and on prognostic factors that affect the choice of therapy, e.g. 

performance status, comorbidities, frailty scale, toxicity, center, type of health insurance 

coverage, bone marrow, liver and renal function. This information has to be recorded every 

time that treatment is susceptible to be changed (e.g., at each follow-up visit). Because post-

randomization data on treatment and clinical factors is not always systematically collected in 

cancer trials, the trial protocol will need to pre-specify the data that will be recorded and the 

procedures to do so during the conduct of the study.

Second, the protocol also needs to specify how the post-randomization data will be used in 

the statistical analysis. Conventional statistical methods cannot appropriately adjust for post-

randomization variables, as illustrated by the causal diagram in Figure 3. In contrast, 

causally-explicit methods (like inverse probability weighting, g-estimation, and the g-

formula) can appropriately adjust for post-randomization variables.

Let us return to our example about the effect of oxaliplatin as adjuvant treatment. One 

approach to estimate the per-protocol effect of the experimental therapy on overall survival 

would be the following. First, censor patients at the time they deviate from the therapeutic 

strategy specified in the protocol, e.g. patients starting FOLFOX plus bevacizumab as third 

line therapy would be censored at the time they start that new regime. Note that patients 

stopping or modifying their assigned treatment for clinical reasons (e.g., toxicity) cannot be 

considered to deviate from protocol as the trial protocol should allow for such changes. 

Second, use the information recorded on post randomization treatment and covariates to 

model, at each time during the follow-up, the probability of remaining on protocol (i.e., the 

probability of being uncensored) conditional on past treatment and covariate history. Third, 

compute subject-specific, time-varying inverse probability weights based on the estimated 

probabilities. Finally, fit a weighted survival model in which each subject is assigned the 

corresponding inverse probability weight at each time 21–23. If a weighted Cox model is 
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fitted, this approach will estimate the hazard ratio that would have been observed had all 

clinical trial participants followed their assigned, pre specified therapeutic strategy until the 

end of the study.23 This approach can also easily incorporate adjustment for selection bias 

due to differential loss to follow-up.

Unfortunately, causally-explicit methods like the one described above are not free of 

potential bias as they depend critically on assumptions that are inherently unverifiable. 

Specifically, these methods require that all pre- and post-randomization prognostic factors 

that affect either treatment choices or lost to follow-up are correctly measured and modeled. 

In our example, the causal estimate might be invalid if health insurance coverage, which 

impacts both survival and treatment adherence, were not correctly measured and adjusted 

for.

Conclusion

Effect estimates based on PRS/PPS are hard to interpret and are affected by a built-in 

selection bias. From the perspective of patients and clinicians, estimates based on DFS or 

overall survival are obviously relevant, but estimates based on PRS/PPS may be misleading. 

Investigators interested in overcoming the problems raised by non-randomized therapies 

may elect a more principled approach: estimating appropriately adjusted (per-protocol) 

effects on overall survival.
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Novelty & Impact

• Post relapse survival and post progression survival have been used to measure 

efficacy in some cancer clinical trials.

• Their use can be misleading and can result in biased estimates.
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Figure 1. 
Three hypothetical scenarios in which, compared with control, the experimental treatment 

has an impact on DFS/PFS (Scenario A), overall survival (Scenario B), or both (Scenario C), 

with PRS/PPS being either shorter (Scenarios A,C) or longer (Scenarios B). Diamonds 

represent disease relapse or progression and squares represent death.
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Figure 2. Causal diagram representing the built-in selection bias in a PRS analysis
Using the example of localized colon cancer2: A0 represents assignment to oxaliplatin-based 

adjuvant chemotherapy, S disease relapse, Y death, and U unmeasured risk factors for 

relapse and death. Selecting the subset of relapsing patients implies conditioning on a 

variable S (represented by the box around S) that is affected by the treatment of interest A0, 

which generally induces a non-causal association between A0 and Y through the unmeasured 

factors U 17 (technically, S is a collider on which we are conditioning by selecting relapsing 

patients).
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Figure 3. Causal diagram representing confounding for non-randomized therapies
A0 represents assignment to the experimental arm, A1 the non-randomized treatment 

received at disease relapse, Y death, L1 prognostic factors that affect the clinicians’ choice of 

A1 (e.g. performance status, comorbidities, frailty scale, toxicity, center, type of health 

insurance coverage, bone marrow, liver and renal function), and U the unmeasured 

determinants of those factors and of death. Conventional statistical methods adjust for the 

factors L1 by conditioning on them, e.g., adding them as covariates in an outcome regression 

model, which will generally induce selection bias in the estimates.
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