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BACKGROUND
Survival analysis has become an important part of cost-e� ectiveness methods for health technology appraisals in oncology. Current health technology assessments usually 
require mean survival times to estimate the life-years gained or, for Markov models, transition probabilities per cycle. Mean survival times are typically derived from fi tting 
parametric survival curves for the lifetime of patients and the integral of the fi tted survival curve used to estimate mean survival.

OBJECTIVES
The aim of this study was to recreate a common situation in which the control arm includes short-term trial data and long-term external data that, despite matching the 
disease, do not match the trial population exactly. Two long-term published data sources were identifi ed for similar patient populations: one to be used as the external 
long-term data set and the other to generate pseudo short-term randomized controlled trial (RCT) data. Four di� erent approaches were used to fi t survival models and 
perform the extrapolation on the pseudo short-term data sets, two of which made direct use of long-term external data. The performance of these models to predict mean 
survival from the complete data set was evaluated. Finally, the fi ndings and limitations of the approaches and these evaluation methods are discussed.

THE DATA
The long-term data sets identifi ed included elderly patients with early stage non-small cell lung cancer (NSCLC), contained 15.5 years of follow-up, and represented 
complete survival estimates for four treatments. Figure 1 presents reconstructed data from Kaplan-Meier estimates and smoothed hazard rates derived from Surveillance, 
Epidemiology, and End Results data presented by Ganti et al.1 for stages I and II NSCLC in an elderly population (≥ 80 years old) diagnosed between 1998 and 2007. These 
data were reconstructed, and RCT-like data sets were created as if patients had started a trial at random times during the fi rst year, with a follow-up of 4 years. The external 
data were reconstructed from data presented by Bach et al.2 from patients with stage I or II NSCLC who were ≥ 65 years old and were diagnosed between 1985 and 1993 
(n = 2,589). General population data were also reconstructed. All data were reconstructed using the methods described by Guyot et al.3 The smoothed hazard rates 
estimated from the complete data set appeared to show that hazard rates changed over time and were not consistent across treatments.

METHODS: EXTRAPOLATION AND EVALUATION
Extrapolation of Standard Parametric Models
This method was based on the method described by Latimer.4 Standard parametric models were fi tted and evaluated in terms of plausibility and fi t. Models included 
standard parametric models, stratifi ed parametric models, and Royston and Parmar5 spline-based models with 1-3 knots, which assumed proportional hazards and time 
varying hazard ratios (HRs).

Bootstrapped Hybrid Model
This method was based on the method described by Gelber et al.6 and Bagust and Beale.7 A Chow-break test8 was used to cut Kaplan-Meier estimates in two. Kaplan-
Meier estimates were calculated for the fi rst part of the curve, and parametric models (exponential, Weibull, log-normal, and log-logistic) were fi tted to the tail of the 
distribution. The whole procedure was bootstrapped. The most plausible model was chosen.

Extrapolation Parametric Models With Direct Use of Long-Term Data
This method was based on the method described by Jackson et al.9 Parametric models were fi tted to the pseudo RCT data, and, after follow-up, predicted hazards were 
used from external data adjusted to match the RCT data. Model averaging was used to give an ensemble of model predictions based on mean Akaike’s information 
criterion and Bayesian information criterion for the models fi tted to the RCT data. HR adjusted predictions from general population data were used after the follow-up of 
the external data. Figure 2 presents the steps involved in using the external data to perform the extrapolation. HR tapering was used to obtain predicted survival estimates 
for radiotherapy, surgery plus radiotherapy, and surgery. It was assumed that hazard rates would eventually equal that from the “no treatment” arm. It was assumed that the 
time to an HR of 1 was a distribution of 10 years with a standard deviation of 2, which gives a range of approximately 3 to 17 years after the start of the trial, and that HRs 
went to 1 in a linear way. This distribution refl ected a belief that the treatment e� ect may continue for a long time after patients received treatment but that the upper limit 
of the distribution could not exceed the plausible limit imposed by age.

Figure 1.  Data Presented by Ganti et al.1 for Early Stage NSCLC in Elderly Patients

Figure 2.  Steps Involved in Estimating the Hazard Rates From Disease-Specifi c External Data and General Population Data for the 
“No Treatment” Arm for Each Cut Point

Bayesian Simultaneous Spline Model of RCT and Long-Term Data
This method was based on the method described by Guyot et al.10 A Bayesian spline-based model was simultaneously fi tted to the RCT and predicted survival from the 
external data, which included general population data. A simplifi ed 1-knot model was needed to achieve convergence, which contained a treated parameter (vs. “no 
treatment”) for the intercept and other parameters allowed to vary with each treatment. Priors were used in the same way as in Goyet et al.10 for the treatment e� ect after 
follow-up and assumed that HRs equaled 1 at 10 years. This model was fi tted using JAGS.11 All other analyses were conducted in R.12

Reference Model
Mean survival times were estimated from the complete data set. They were based on Kaplan-Meier estimates from bootstrap samples and the area under the curve used 
to give distributions of mean survival times for each treatment.

Evaluation
Survival curves and predicted mean overall survival (OS) from the above models were compared with those from the reference model. Plausibility of standard parametric 
models was based on visual fi t to the long-term external data.

RESULTS
Figure 3 presents the predicted survival curves and predicted mean survival distributions from the models tested, with a follow-up of 4 years, compared with the reference 
model. Only the results from the most plausible models are shown for the parametric approach4 and the hybrid model.6,7 This chart shows the following:

• The simple parametric model and hybrid exponential models were unable to produce predictions that remained below those derived from the general population data 
and were therefore not considered to give plausible predictions.

• The methods that directly used external data appeared to perform better. However, the Bayesian model appeared to underestimate the error as a high proportion of 
the estimates from the reference model fall outside the predicted 95% credible intervals for the extrapolated part of the curve.

DISCUSSION
• The data used in this study were from elderly patients (≥ 80 years old) in whom general, age-related mortality was a factor, which was not detectable in the short-term 

data. This resulted in methods that did not use long-term external data and general population data that produced biased predictions. It would be interesting to see 
how these models perform in younger patient populations.

• For this study, the di� erence in study arms was assumed to be caused by the treatment e� ects. However, because the data were observational, the di� erences 
between treatments and duration of treatment e� ect may have been due to variation in patient populations that made them more likely to receive radiotherapy and/or 
surgery. This makes modelling observational data more di�  cult, as expert opinion may not be able to advise on what happens after follow-up.

• An accurate estimate of the duration of treatment e� ect after follow-up is needed to make accurate, long-term predictions. RCTs of systemic drugs are likely to have a 
shorter duration of treatment e� ect, on which clinical experts can give advice.
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(A) Original reconstructed data for “no treatment”
(B)  Bach et al.2 data adjusted using a time acceleration factor to match 

the data presented by Ganti et al.1
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(C)  Royston and Parmer5 spline model fi tted to the adjusted data 
presented by Bach et al.,2 with extrapolation based on HR-adjusted 
predictions from the model fi tted to general population data

(D)  Predicted hazard rates from model shown in chart (C) plotted with 
general population data

CrI = credible interval.

CI = confi dence interval.

Number at risk
No treatment 286 149 86 60 37 18 15 15 9 4 1 0 0 0 0 0
Radiotherapy 339 215 117 75 37 23 14 9 5 2 2 2 2 0 0 0
Surgery + radiotherapy 55 36 22 16 14 8 8 4 4 4 0 0 0 0 0 0
Surgery 585 466 401 338 280 230 194 164 129 105 73 47 33 22 20 6
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Figure 3.  Results From the Cut Point of 4 Years Compared With the Model Fitted to the Complete Data Set

Jackson et al. (2017): Ensemble with external data Guyot et al. (2017): Bayesian 1-knot model

Latimer (2013): Exponential model Gelber et al. (1993); Bagust and Beale (2014): Hybrid model
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Solid stepped line = Kaplan-Meier 
estimates for the short-term data 
(4-year follow-up); dashed stepped 
line = Kaplan-Meier estimates for the 
complete data. CrI, credible interval.

(A) Predicted survival by treatment for each extrapolation method

Jackson et al. (2017): Ensemble with external data Guyot et al. (2017): Bayesian 1-knot model

Latimer (2013): Exponential model Gelber et al. (1993); Bagust and Beale (2014): Hybrid model
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CONCLUSIONS
• The results from this study support the direct use of external data to extrapolate survival curves even when the external data may not be an exact 

match with the RCT data.

• At this stage, for this example, the method based on the Jackson et al.9 approach performed better with less bias compared with the other 
models tested.

• This study demonstrates the value of including all sources of error within a single model. The method based on Jackson et al.9 was the only 
model that included errors for the choice of distribution and the uncertainty of the treatment e� ect after follow-up. Sensitivity analyses can be 
used to address this to some extent in other models. However, presenting and making sense of numerous models for multiple approaches 
makes the results less transparent and harder to interpret.

• The methods described in this study based on the Jackson et al.9 approach, which includes model averaging, using HR distributions and 
distribution for the time to HR of 1, can be implemented in a health economic model.


