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Clinical prediction models (CPMs) are often used to guide treatment initiation, with individuals at high risk
offered treatment. This implicitly assumes that the probability quoted from a CPM represents the risk to an
individual of an adverse outcome in absence of treatment. However, for a CPM to correctly target this estimand
requires careful causal thinking. One problem that needs to be overcome is treatment drop-in: where individuals
in the development data commence treatment after the time of prediction but before the outcome occurs. In this
issue of the Journal, Xu et al. (Am J Epidemiol. 2021;190(10):2000–2014) use causal estimates from external
data sources, such as clinical trials, to adjust CPMs for treatment drop-in. This represents a pragmatic and
promising approach to address this issue, and it illustrates the value of utilizing causal inference in prediction.
Building causality into the prediction pipeline can also bring other benefits. These include the ability to make and
compare hypothetical predictions under different interventions, to make CPMs more explainable and transparent,
and to improve model generalizability. Enriching CPMs with causal inference therefore has the potential to add
considerable value to the role of prediction in healthcare.

counterfactual causal inference; risk prediction; treatment drop-in

Abbreviation: CPM, clinical prediction model.

Editor’s note: The opinions expressed in this article are
those of the authors and do not necessarily reflect the views
of the American Journal of Epidemiology.

Clinical prediction models (CPMs) predict the risk of
adverse outcomes for individuals, such as the future risk of
a cardiovascular event (e.g., acute myocardial infarction) for
an individual in primary care (1). CPMs are commonly used
to guide decisions concerning intervention, such as initiating
treatment—for example, statin initiation for individuals at
high cardiovascular risk (2). Such a use assumes, explicitly
or implicitly, that the prediction issued by a CPM is a
treatment-naive prediction—that is, the (hypothetical) risk
of an outcome if the individual does not commence treatment
(3). Constructing CPMs that estimate this hypothetical risk
is nontrivial, not least because of treatment drop-in, where
individuals in the development data set commence treatment
after baseline but before occurrence of an outcome (4).
Deriving a CPM that correctly estimates treatment-naive

risk, in the presence of treatment drop-in, is challenging
because individuals do not commence treatment at random
(3, 5).

In an excellent contribution in this issue of the Journal, Xu
et al. (6) recommend a pragmatic approach to handling treat-
ment drop-in, illustrated with the example of statin initiation
in cardiovascular CPMs. Their proposal is to take the relative
risk reduction for statins, estimated in randomized controlled
trials, and fix the coefficient for statins to this value, with
statins treated as a time-dependent variable in the model. A
similar idea to this has been proposed before in the context of
treatment drop-in in clinical trials (7), and indeed the general
idea of using external data sets to make adjustments has also
been proposed in the multiple imputation literature (8).

Previous approaches to address treatment drop-in for
CPMs have estimated the effect of treatment from the
same data as the development data used for the CPM—
using causal inference techniques such as inverse probability
weighting (9) or marginal structural models (3). Xu et al.’s
approach avoids requiring the usual assumptions when
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making causal inference with observational data (such as
conditional exchangeability and positivity). However, it
introduces assumptions concerning the generalizability of
the trial estimate and also disregards the uncertainty in the
trial estimate. Nevertheless, the simplicity of the approach
is a substantial advantage: only requiring the handling
of time-dependent covariates when modeling. Moreover,
the approach could be readily extended to incorporate
approaches for generalizing estimated treatment effects from
a randomized controlled trial to broader populations (10,
11). Uncertainty could also be considered, for example,
through draws from the posterior distribution of the causal
effect size.

As soon as one entertains the need for “treatment naive-
risk,” one is targeting estimands that require causal rea-
soning to estimate well, given that they are hypothetical or
counterfactual predictions (12). We note that hypothetical
prediction aims at answering “what if” questions about the
future, while counterfactual prediction requires contemplat-
ing states contrary to what has truly happened, and this
difference can be important (13). Here we will use the less-
specific term causal prediction. Failure to recognize when
a clinical question requires methods for causal prediction
can lead to the development of a model that targets the
wrong estimand, such as a “treated” instead of “treatment-
naive” risk. This might lead to incorrect risk predictions and
even suboptimal treatment decisions, as demonstrated in Xu
et al. and in simulations by others (3, 14). As such, it is
helpful to first clarify the estimand that is being targeted,
even in prediction (15). Doing so provides clarity on the
assumptions that are required for a proposed method to
provide accurate predictions of the required estimand, and
indeed, clarity on exactly what is meant by “baseline risk,”
which is more nuanced than it first might seem.

On top of providing the machinery to address issues such
as treatment drop-in, the strengths of causal inference, if
combined with established practices of CPM development,
open a wide range of opportunities.

First, causal reasoning allows us to clarify some of the
so-called paradoxical findings that are sometimes observed
in CPMs. An oft-quoted example was discussed by Caruana
et al. (16), in which patients with pneumonia and asthma
in a hospital setting had better outcomes than those with
pneumonia only, because of a policy that saw patients with
asthma in addition to pneumonia directly admitted to the
intensive care unit; this was originally ignored when build-
ing the CPM. Similarly, use of causal inference will help to
overcome the more subtle, yet pernicious, challenge of risk-
factor associations being attenuated because treatment is
received differentially according to the value of the risk fac-
tor (17, 18). Although this is not necessarily an issue for the
accuracy of a prediction model, it can greatly reduce the face
validity and acceptability (17). Causal reasoning allows us to
explain such paradoxical associations and lower barriers for
the implementation of a prediction model in clinical practice,
and make models more explainable. Causal inference meth-
ods can also help to examine the “counterfactual fairness” of
a CPM and identify unwanted discriminatory behavior (19).

Second, it can allow better generalizability of a CPM.
Particular interventions or policies might be present in the

setting in which a CPM is developed but might not exist in
a setting where the model is to be used—data-set shift (20).
Dickerman and Hernán (21) give an example where indi-
viduals with severe heart failure are likely to receive a heart
transplant, thus reducing their risk of death, in the population
in which a CPM is developed. This CPM will perform poorly
in a setting where the availability of heart transplants is low.
Causal prediction can be used to issue predictions depend-
ing on the availability of heart transplants; thus, a causal
CPM could be generalized to a setting regardless of this.
Moreover, it can make explicit the complex feedback loop
that arises when the use of a CPM itself changes outcome
risks (which, indeed, is likely to be a sign of success of the
CPM!) and thus allow the CPM to generalize over time.
Once a CPM is deployed, it should be regularly updated
(22), yet causal reasoning is needed to explicitly model the
relationship between the baseline risk and the actions taken
in response to that risk as estimated by the CPM (23).

Third, it introduces the possibility of calculating hypo-
thetical risk under a range of possible interventions and
therefore directly informing a decision about which inter-
vention(s) to choose (24). It is too tempting at present for
end-users of CPMs to do this, incorrectly, by modifying
inputs to the CPM. For example, one might use QRISK (25)
to estimate the impact of a weight loss intervention on a
patient’s cardiovascular risk by entering a lower body mass
index into the calculator. This is clearly wrong (26), but we
have anecdotal evidence that this occurs and hypothesize
that the practice is widespread. Enriching CPMs with the
causal machinery needed to do this correctly could therefore
have substantial benefits in terms of optimizing decisions
supported by CPMs. This might be considered “pure” causal
inference (12); however, we believe the additional consider-
ations when developing and validating CPMs are also useful,
such as optimizing for estimating absolute risk, ensuring that
models are pragmatic to implement, and supporting clinical
decisions on an individual level.

Finally, it clarifies the assumptions upon which these
CPMs are relying, in terms of comparability of the devel-
opment and deployment populations.

Indeed, rather than asking when causal reasoning can
help with prediction, one might instead ask when it is not
useful. Whenever a decision to intervene is made that can
potentially affect future outcomes, and therefore predicted
risk, causal approaches will be beneficial. Not all medical
decisions fall into this category; some decisions can be made
because of a particular risk, and not to affect it, and in these
cases causal inference would not be required. For example,
in a palliative care setting it might be useful for patients and
their families to know the predicted outcomes.

Despite the clear advantages, the use of causal prediction
is not widespread. This is because there are substantial
challenges to be overcome before it can be implemented
effectively.

First, validation is a major challenge. CPMs are usually
validated in a test data set by considering the accuracy, cali-
bration, and discrimination of the predictions issued. This
relies on factual data: the availability of predictors and the
corresponding observed outcomes. Validation of potential
outcomes requires a different solution, because the outcomes
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are, by definition, not observed. Where the hypothetical
scenario is a population in which no one receives treatment,
one solution might be to validate the model using historical
or geographically different data, where the treatment is not
prevalent. However, such data might not be available and
might differ in other ways from the current target population
for the CPM. Xu et al. (6) attempt to overcome this by
generating counterfactual treatment-naive survival times by
adjusting the factual survival times according to the assumed
risk reduction conferred by statins. However, the validation
is then, partly at least, a self-fulfilling prophecy, because
both the fitted model and the validation data use the same
adjustment for the assumed causal effect of statins. There-
fore, only the “prediction” part of the model is validated,
under the assumption that the causal adjustment for the effect
of statins is correct. Approaches where adjusted or synthetic
outcomes are generated for validation data therefore require
further scrutiny. Validation therefore remains perhaps the
most pressing challenge to overcome before use of causal
CPMs can become more widespread (24).

Second, Xu et al. (6), and most other literature on this
topic, have considered only single interventions in isolation.
Of course, the reality is far more complex than this. Even
to define a treatment-naive prediction requires the consid-
eration of all relevant interventions that are operating in
a particular setting. For example, alongside prescribing a
statin, a physician might recommend a range of lifestyle
interventions, such as increased exercise, changes in diet,
and quitting smoking, all of which could be considered as
interventions. This is challenging both to elicit and to model
effectively.

Third, because causal predictions involve potential out-
comes, and are by definition out-of-sample predictions, we
must be cautious about extrapolation. Causal approaches
typically require more data: For example, using causal pre-
diction to make a treatment decision using inverse probabil-
ity weighting requires that we observe at least some patients
with the characteristics of interest receiving both “actions”
under consideration. In Xu et al. (6), the causal effect was
instead estimated using external clinical trial data.

These challenges might lead one to conclude that causal
prediction is simply too challenging and should not be
considered. We disagree, primarily because there is a clinical
need for such predictions. To fill the void, existing (factual)
CPMs are already being used as if they provide causal
predictions. This can lead to unsubstantiated conclusions
and even incorrect clinical decisions being made. Therefore,
there is an urgent need for causal prediction to provide clarity
and correctness to the use of CPMs in this way.

In conclusion, CPMs are often interpreted and used as if
their predictions refer to causal scenarios, and indeed used
to compare risk under different hypothetical interventions.
Discouraging such practice is likely to be unhelpful, and
risks undermining the important progress made in improving
the reporting and robust deployment of prediction models
recently achieved, for example with the TRIPOD statement
(27). A much more fruitful direction is likely to be enriching
CPMs with the machinery needed to correctly (and with
awareness of the assumptions required) provide the causal
predictions that are really of interest to decision-makers. The

approach of Xu et al. is an important step in upgrading the
machinery of CPMs toward that goal, although extensions
that account for both the uncertainty and (lack of) gener-
alizability in the causal estimates are required. We would
recommend the Xu et al. approach (6) be used alongside
complementary approaches that estimate the intervention
effects from the observational data (3, 9) to ensure maximum
robustness.
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