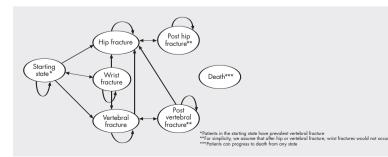
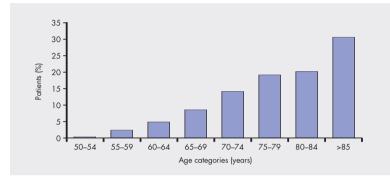
Modeled cost impact of persistence with bisphosphonate therapy for women with postmenopausal osteoporosis

Ettinger B,¹ Earnshaw SR,² Brogan AJ,² Graham CN,² Amonkar MM,³ Baran RW⁴

¹University of California, San Francisco, CA; ²RTI Health Solutions, Research Triangle Park, NC; ³GlaxoSmithKline, Philadelphia, PA; ⁴Roche Laboratories, Inc. Nutley, NJ

INTRODUCTION


In the US, 10 million individuals have osteoporosis while an additional 34 million have low bone mass; 68% are women.¹ Osteoporosis is responsible for more than 1.5 million fractures each year in the US and annual direct expenditures (hospital and nursing home care) are estimated at US\$14 billion. Bisphosphonates are currently the most widely used drugs for osteoporosis. Most clinical trials of bisphosphonates demonstrate reduction of fracture risk at 1 year, suggesting that a minimum 1 year of therapy is required to achieve statistically and clinically significant reductions in fracture rate. Patient persistence with bisphosphonates is therefore important if therapy is to yield a clinical benefit (prevent fractures and chronic disability) in patients with osteoporosis. Previous studies have shown that persistence with weekly bisphosphonates is better than with daily dosing regimens yet >50% of patients on the weekly regimen do not persist on therapy at the end of 1 year.^{2,3} Previous cost-effectiveness (CE) analyses of bisphosphonate therapy have included limited information on important issues such as the impact of treatment persistence.^{4,5} We developed a model to estimate CE of treatment for women with established osteoporosis when persistence was improved.


METHODS

- Markov Model, using 10-year time horizon, up to 5 years of therapy (Figure 1; Appendix 1).
- Perspective of the paver.
- Postmenopausal women aaed ≥50 years with prevalent radiologic vertebral deformity and hip bone mineral density T-score ≤ -2.5 .
- Vertebral fracture risk reduction 43%, beginning after 1 year.
- Non-vertebral fracture (hip and wrist) risk reduction 18%, beginning after 1 year.
- Waning fracture benefit following therapy discontinuation based on expected hip bone density loss (0.54%/year).
- Yearly drug cost = US\$780 wholesale acquisition cost for weekly bisphosphonate.
- Direct costs for health resources for fracture treatment estimated from literature, discounted at 3% yearly. Utilities derived from the literature, discounted at 3% yearly.
- Baseline persistence: 36% at 1 year, 24% at 2-5 years.³
- Transition probabilities based on literature, accounting for impact of increasing age, prior fracture, and mortality.
- Comparators
- bisphosphonate therapy persistence reported in managed care setting (usual)³
- bisphosphonate therapy with 10% absolute improvement in persistence over usual (increased).

Sensitivity analyses

- age <65 years vs \geq 65 years
- absolute improvement in persistence varying from 0-50% above usual

The analysis population was elderly, with a median gae of 80 years (Figure 2).

Table 1. Fracture and cost per patient

RESULTS

Outcome	Usual	10% increased persistence
Number of fractures per 1,000 patients treated		
Hip	151	148
Vertebral	238	227
Wrist	73	72
All	462	447
Average costs per patient treated (US\$)		
Drug	1,062	1,418
Fracture care	5,841	5,727
Total	6,903	7,146

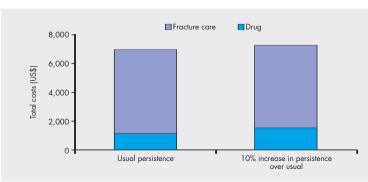
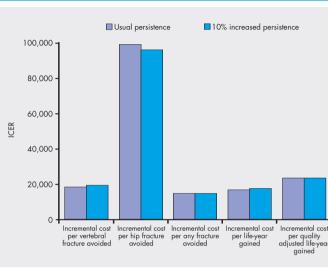
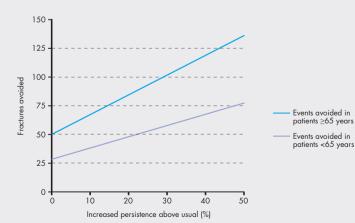




Figure 3. Total healthcare costs per bisphosphonate-treated patients.

Figure 4. ICERs for selected endpoints.

• The incremental cost-effectiveness ratios (ICERs) for selected endpoints were similar with 10% improved persistence and with usual persistence (Figure 4).

Figure 5. Sensitivity analyses: fractures avoided per 1,000 patients as persistence increases above usual

• A greater fracture benefit is seen with greater persistence; the benefit is greatest among the elderly (Figure 5).

DISCUSSION

- Based on treating a population of high risk women (T-score <-2.5 and previous vertebral fracture)
- a conservative improvement in persistence of 10% was selected to approximately match differences observed for weekly bisphosphonate regimens compared to daily dosing^{2,3}
- small increments in persistence have noted effects on numbers of fractures averted
- increased drug costs due to increased persistence are largely offset by reduced numbers of fractures and their attendant costs
- thus, an improvement in persistence with bisphosphonate therapy can result in 3.2% fewer fractures with little economic impact to payers (3.5% greater cost)
- within our model's parameters, improved persistence reduces incremental costs per hip fracture avoided and does not substantially change incremental costs per vertebral fracture avoided or other ICERs
- greater than 10% improvements in persistence may positively impact patient outcomes and ICERs; further investigation is needed.

CONCLUSIONS

- Greater clinical benefit can be expected when persistence is improved.
- Increased persistence maintains acceptable ICERs, by US standards.
- Bisphosphonate regimens that potentially increase persistence are warranted.

REFERENCES

- 1. National Institutes of Health. Osteoporosis and Related Bone Diseases National Resource Center, Accessed November 12, 2004. Cramer JA, et al. J Bone Miner Res 2004;19(Suppl. 1):S448
- 3. Utilization characteristics associated with bisphosphonate therapy: Ingenix II. Data on file Roche.
- 4. Johnell O. et al. Pharmacoeconomics 2003:21:305-14.
- 5. Grima DT, et al. Pharmacol Ther 2002:27:448-55.

Parameter	Source
Bisphosphonate efficacy	Kanis JA, et al. Health Technology Assessment 2002;6:29
Residual effect of therapy	Bagger YZ, et al. Bone 2003;33:301–7
Population demographics	2002 US Census; US Census Bureau 2002
Initial transition probabilities	Black DM, et al. J Bone Miner Res 1999;14:821–8 Kanis JA, et al. Osteoporos Int 2000;11:669–74 Kanis JA, et al. Osteoporos Int 2001;12:356–61
Fracture transition probabilities	Kloztbeucher CM, et al. J Bone Miner Res 2000;15:721–39
Mortality probabilities	US National Vital Statistics Reports, 2003 Johnell O, et al. Osteoporos Int 2004;15:38–42
Utilities	Brazier JE, et al. Osteoporos Int 2002;13:768–76 Tosteson ANA, et al. Osteoporos Int 2001;12:1042–9
Drug costs	Wholesale Acquisition Cost (WAC); Redbook 2005
Medical care costs	Eddy DM, et al. Osteoporos Int 1998;(Suppl. 4) (Costs adjusted to 2004 dollars using the Medical Consumer Price Index)

Appendix 1. Functional parameters