Background

- Intracerebral hemorrhage (ICH) is the deadliest form of stroke¹ resulting in mortality and severe disability among survivors.
- ICH events impose a significant economic burden due to intense medical resource use during acute treatment as well as the cost of long-term management of survivors. $^{2\cdot 6}$
- · Currently, no drug therapies have been proven effective in the treatment of acute ICH
- · Recombinant activated factor VII (rFVIIa) is currently indicated for treatment of bleeding episodes and for the prevention of bleeding in surgical interventions/invasive procedures in hemophilia patients with factor VIII inhibitors and patients with congenital FVII deficiency.
- A recent Phase IIb clinical trial showed that administration of rFVIIa within 4 hours of ICH onset reduced mortality and improved 90-day functional outcome compared to standard care.⁷

Objective

To determine cost-effectiveness of rFVIIa compared to current standard of care in patients with acute ICH from a US managed care perspective.

Methods

Patient Population

Patients enter the hospital emergency room presenting with acute ICH within 3 hours of symptom-onset. Specific patient characteristics include:

- Age distribution typical of published patient populations with ICH.5.8
 Characteristics (ICH severity, disease history, time of arrival after onset of ICH event) similar to those observed in the clinical trial.7
- Patient weight of 75 kilograms.

Study Design

- . A decision-analytic model was created to estimate the cost-effectiveness of rFVIIa for acute ICH (Figure 1).
- · Model takes a US managed care perspective.
- \bullet Patients entering the model receive rFVIIa 40 $\mu g/kg,\,80~\mu g/kg,\,or\,160~\mu g/kg$ (three dose arms in the Phase IIb trial), or standard care within 4 hours of ICH onset. Drug costs are based on wholesale acquisition costs (WAC).9
- Patients are followed for the first 90 days after ICH onset and annually thereafter for the remainder of lifetime.
- · Functional status, measured by modified Rankin Score (mRS), is estimated at 90 days after ICH onset based on clinical trial data (Table 1).
- · Short-term cost calculations (90 days after ICH onset) are based on:
- -Treatment-related clinical efficacy (Table 1)
- -Length of stay in hospitals from clinical trial data (Table 2)
- -Analysis of managed care claims data (Table 3)
- -Costs include: drug cost, inpatient stay, skilled nursing facility costs, and any additional medical management costs.
- Long-term Annual Calculations:
- -Post-90 day costs and outcomes are estimated annually based on mRS score. using mRS-specific multipliers obtained from published literature (Table 4).
- Utility weights specific to each mRS score are obtained from published literature (Table 4).
- . Costs and outcomes are presented in 2005 US \$ and discounted at a rate of 3% per annum.

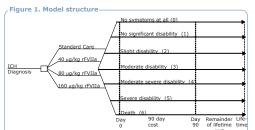
Sensitivity Analysis

- · One-way sensitivity analyses were performed on key input parameters.
- Parameters were varied by +/- 20% or based on plausible range data provided in the literature.¹⁰

Modified Rankin Score (mRS)

mRS 0 = no disability mRS 1 = no significant disability

mRS 2 = slight disability mRS 3 = moderate disability


mRS 4 = moderate to severe disability

mRS 5 = severe disability mRS 6 = death

Cost-Effectiveness of Recombinant Activated Factor VII in the Treatment of Intracerebral Hemorrhage: A US Managed Care Perspective

Stephanie R. Earnshaw, PhD1; Ashish V. Joshi, MS, PhD2; Michele R. Wilson, MSPH1

RTI Health Solutions, Research Triangle Park, NC; 2Novo Nordisk Inc., Princeton, NJ

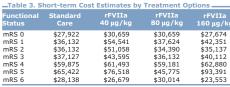

- The model assumes a permanent functional status after 90 days based on published.
- Long-term cost multipliers and death hazard ratios are based on ischemic stroke model.¹¹
 The model assumes that long-term costs and outcomes are based on functional status as

Table 1. Distribution of Patients by Functional Status after 90 Days

	Tatients in mits state (70)				
Functional Status	Standard Care	rFVIIa 40 μg/kg	rFVIIa 80 μg/kg	rFVIIa 160 μg/kg	
mRS 0	2.1	0.0	9.8	7.8	
mRS 1	6.3	16.7	10.9	16.5	
mRS 2	9.4	13.9	14.1	9.7	
mRS 3	13.5	14.8	15.2	11.7	
mRS 4	24.0	22.2	23.9	24.3	
mRS 5	15.6	14.8	6.5	10.7	
mRS 6	29.2	17.6	18.5	19.4	

-Table 2. Initial Hospital Length of Stay by Functional Status

	Initial Hospital LOS (days)*			
Functional Status	Standard Care	rFVIIa 40 μg/kg	rFVIIa 80 μg/kg	rFVIIa 160 µg/kg
mRS 0	11.0	12.1	12.1	10.9
mRS 1 mRS 2	14.3 14.3	21.7 20.3	14.9 13.6	16.8 13.9
mRS 3	14.7	17.3	14.3	15.9
mRS 4	18.8	19.5	18.5	20.1
mRS 5	21.2	26.0	12.7	33.3
mRS 6	13.5	12.8	14.4	11.3

-5 were assumed to transition to a skilled nursing facility (SNF) after hospital discharge he daily SNE costs were obtained from the MetLife market survey

Functional Long-term Long-term Utility

Status	Annuai	Mortality	Values12	
	Medical Costs	Hazard ¹¹		
mRS 0	\$9,228	1.00	0.85	
mRS 1	\$9,228	1.00	0.85	
mRS 2	\$11,720	1.11	0.85	
mRS 3	\$17,902	1.27	0.51	
mRS 4	\$36,727	1.71	0.15	
mRS 5	\$55,460	2.37	0.15	
mRS 6	\$0	0.00	0.00	

Long-term annual costs estimated from a managed care claims data analysis.* Costs for patients with no or minimal disability (mRS 0-1) were estimated, and then cost multiplie were applied to estimate the annual costs for patients in each mRS state. "9 Note: these

Results

nual Meeting of the Academy of Managed Care Pharmacy

- Expected lifetime costs per ICH patient were calculated for each treatment arm (Figure 2). Treatment with 160 µg/kg rFVIIa resulted in the highest cost, while treatment with 80 µg/kg rFVIIa resulted in the lowest cost (Figure 2).
- Cost of rFVIIa is low relative to total expected medical costs (Figure 2).
- Expected gain in life-years and QALYs were higher for all treatment groups compared to patients who did not receive rFVIIa (Figure 3).
- · Results are robust to realistic parameter variation (Table 5)

_Table 5. One-way Sensitivity Analysis: Effect of Parameter Variation on the Incremental Cost per Life-Year for rFVIIa

Com	parea	το	Standar	a Care	
				rEVI	

Compared to Stan			
	rFVIIa	rFVIIa	rFVIIa
Model	40 μg/kg vs	80 μg/kg vs	160 μg/kg vs
Parameter	Standard Care	Standard Care	
Base-Case Analysis			
ICER (\$/Life-Year)	\$14,920	Dominant	\$8,780
Sensitivity Analysis Cost Multiplier			
Lower Bound	\$16,821	\$8,237	\$18,548
Baseline	\$14,920	Dominant	\$11,204
Upper Bound	\$12,938	Dominant	\$4,056
Death Hazard Ratio			
Lower Bound	\$13,669	Dominant	\$6,573
Baseline	\$14,920	Dominant	\$11,204
Upper Bound	\$16,002	\$4,145	\$14,540
Clinical Efficacy 40 µg	ı/ka		
Lower Bound	\$31,323		
Baseline	\$14,920		
Upper Bound	\$4,677		
Clinical Efficacy 80 μg	ı/ka		
Lower Bound		\$9,077	
Baseline		Dominant	
Upper Bound		Dominant	
Clinical Efficacy 160 µg/kg			
Lower Bound			\$28,208
Baseline			\$11,204
Upper Bound			\$2677

comparing if YIII a 0 µg/kg, 30 µg/kg, and 160 µg/kg to standard care when input parameter values are varied. Bay 90 µg/kg, and 160 µg/kg to standard care when input parameter values are varied. Bayer last 1,23e/kg, and 160 µg/kg are \$14,920.

**2,296, and \$1,23e/kg-ickel/ick

Dominant means that the comparator (rFVIIa) is both more effective and less expensive than

Conclusions

- Treatment with rFVIIa 40 μg/kg and 160 μg/kg are cost-effective compared to
- Treatment with rFVIIa 80 μg/kg is not only cost-effective but is cost-saving compared to the current standard of care.

References