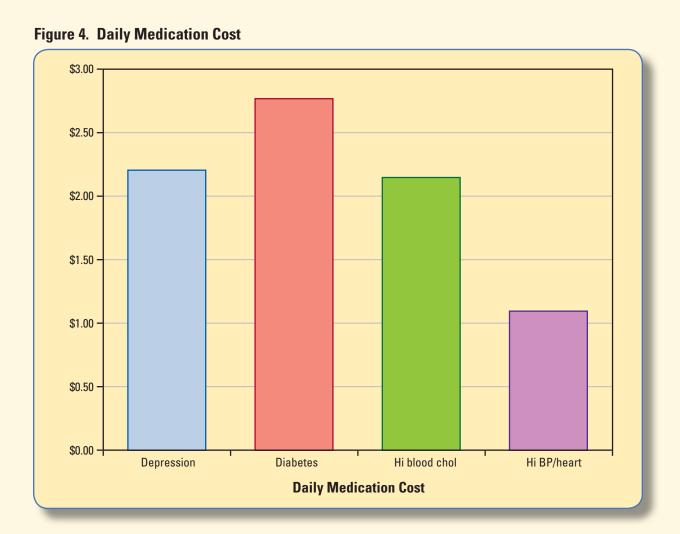


Estimation of Increases in Direct Medical Expenditures Associated With Medication Nonadherence and Potential Savings From Increased Adherence

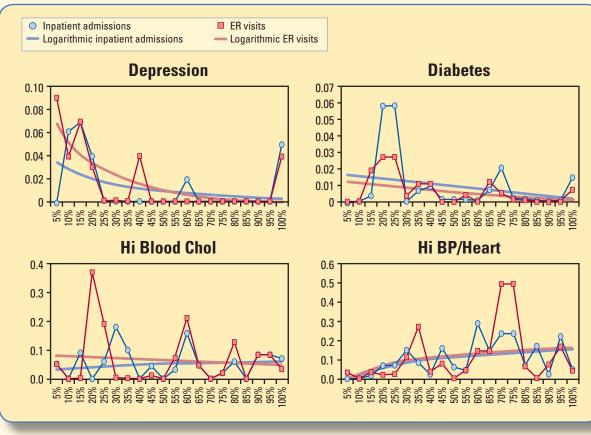
Katherine A Hicks,¹ Sudeep Karve,¹ Anna Vlahiotis,² Sharon Frazee,² Yuhong Tian,² Stephanie R Earnshaw¹ ¹RTI Health Solutions, Research Triangle Park, NC, United States; ²Express Scripts, Inc., St. Louis, MO, United States

BACKGROUND

- Medication nonadherence is highly prevalent and results in increased hospital and nursing facility admissions, additional medical treatment and medications, increased mortality, and other effects.¹
- Medication nonadherence results in estimated increases in direct medical costs in the United States by at least \$106 billion in 2009 dollars.¹


OBJECTIVE

 We estimated annual increases in medical expenditures due to medication nonadherence and potential annual savings from increasing adherence for members of a prescription-drug benefit plan taking medications in four drug therapy classes (TCs).


METHODS

Model/Overall

 A decision-analytic model was constructed to estimate the current cost of nonadherence and potential savings from increasing adherence in the Express Scripts, Inc. (ESI) prescription-drug benefit plan member population. Figure 1 outlines the steps used in the model to conduct the analysis.

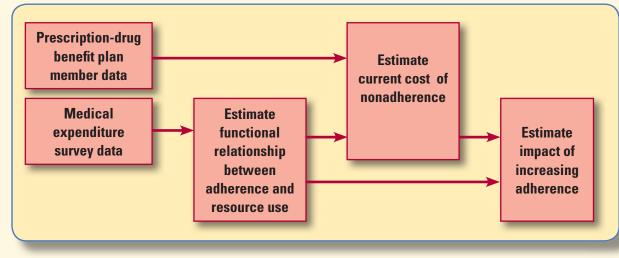
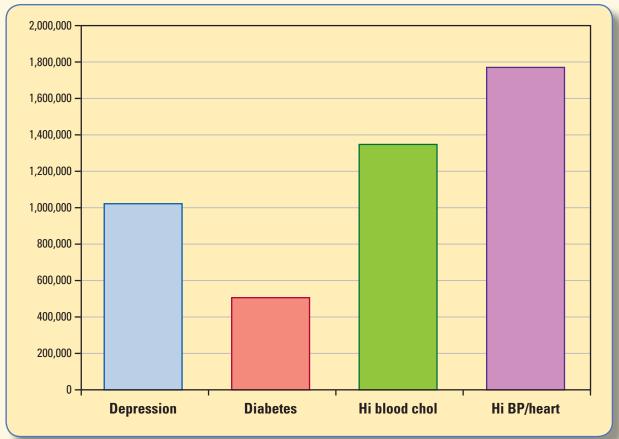

Figure 6. Relationship Between Adherence and Disease-Specific Resources

Figure 7. Relationship Between Adherence and All-Cause Resources

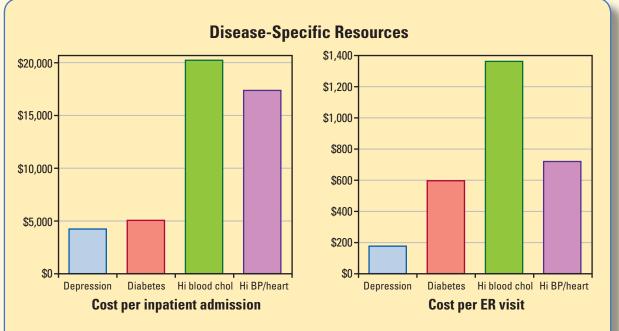
Innatient admissions	FR visits

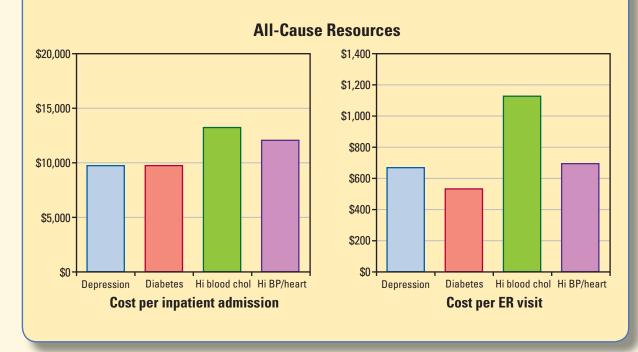
Figure 1. Model Structure



- FourTCs were considered: depression, diabetes, high blood cholesterol ("hi blood chol"), and high blood pressure or heart disease ("hi BP/heart").
- Resource use included all-cause and disease-specific annual hospitalizations and emergency room (ER) visits.
- Two levels of resources were considered for ESI users in each TC:
- Disease-specific resources: Resource use related to the TC only based on ranges of International *Classification of Diseases, 9th revision* (ICD-9) codes relevant to each TC
- All-cause resources: All resource use
- The model assumes a third-party payer economic perspective.

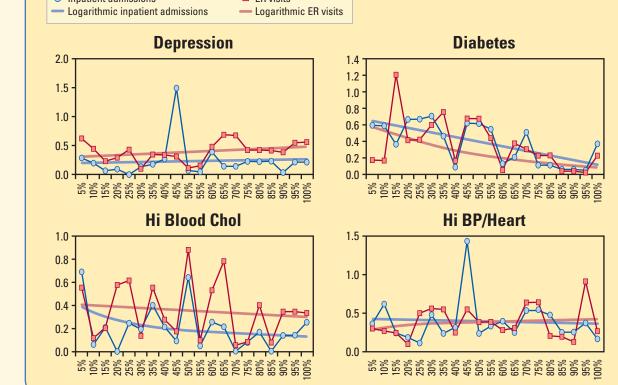
Data


- Data sources
- ESI prescription-drug benefit plan ("ESI data")
- Patients ≥ 18 years, continuously enrolled, with at least one claim in first quarter and at least two retail claims or one home delivery claim during 2008
- Medical Expenditure Panel Survey ("MEPS data") panels 11 and 12 (the most recent available panels) conducted from 2006-2007 and from 2007-2008²
- Patients who purchased medication in aTC (identified by National Drug Codes) in the first interview round and were eligible for all five survey rounds
- Model parameters populated by ESI data
- Number of medication users in ESI population byTC (Figure 2)
- Current member population distribution among 5% adherence levels by TC (Figure 3)
- Daily medication cost = total cost of TC-related medications ÷ total days' supply acrossTC-related medication prescriptions (Figure 4)

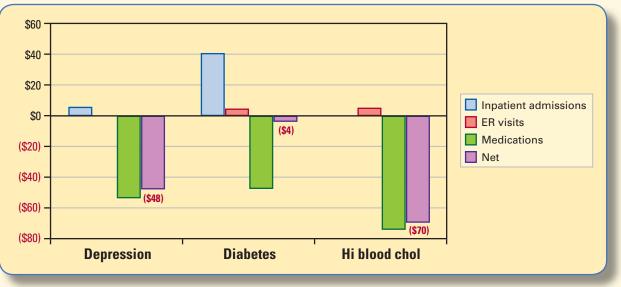

Figure 2. Number of Medication Users in ESI Population

- Model parameters populated by MEPS data
- Average annual number of inpatient admissions and ER visits per person by adherence level
- Cost per inpatient admission and cost per ER visit (Figure 5)

Figure 5. Cost per Inpatient Admission and Cost per ER Visit



Calculation of Patient Adherence


- Medication possession ratio (MPR) was used to represent adherence.³
- MPR = total days' supply of medication ÷ number of days between index prescription date and the survey panel end date
- Total days' supply = number of prescriptions across all survey rounds × average days' supply per prescription (obtained from ESI data as proxy for MPR calculated in MEPS data)
- Patients were considered adherent when MPR ≥ 80%; patients were nonadherent when MPR < 80%.

Calculation of Cost of Nonadherence and Potential Savings From Increasing Adherence

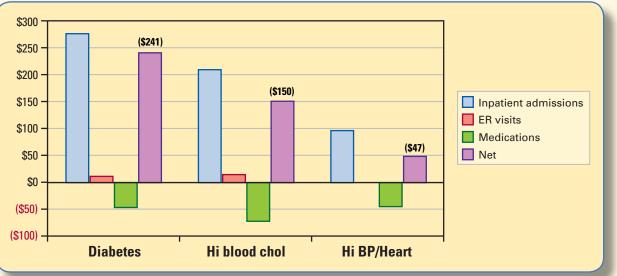
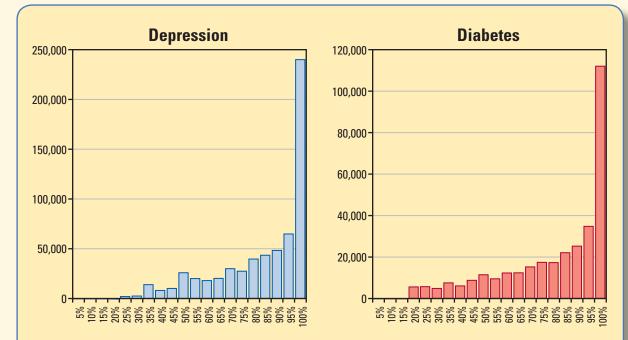

Relationship between adherence and disease-specific resource use

Figure 8. Additional Annual Expenditures (in \$ Millions) Attributable to Nonadherence: Disease-Specific Resources



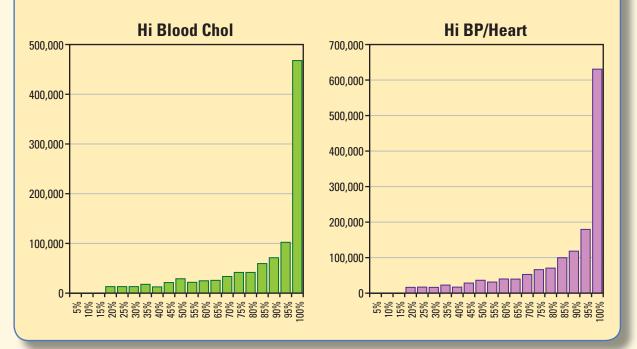
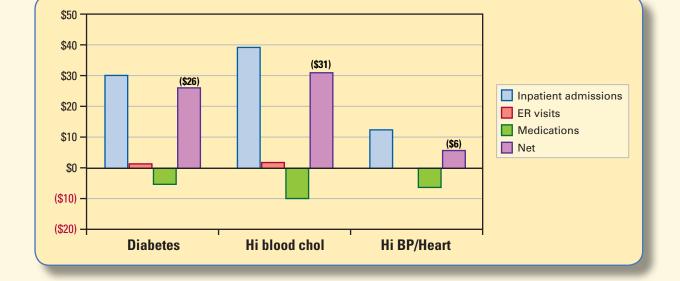

Figure 9. Additional Annual Expenditures (in \$ Millions) Attributable to Nonadherence: All-Cause Resources

Figure 10. Potential Annual Savings in All-Cause Expenditures (in \$ Millions) From Increasing Overall Adherence by 2%

Figure 3. Current Member Population Distribution Among 5% Adherence Levels



and all-cause resources were estimated by fitting curves (best between exponential, logarithmic, or linear approximation) to the average per-user resource use for each adherence level.

- Cost of nonadherence = cost for adherent patients cost for nonadherent patients
- Calculated for inpatient admission costs, ER visit costs, and net costs
- Net costs = inpatient admission costs + ER visit costs medication costs
- Increases in adherence were assumed to be an increase in MPR of 2% for patients at each adherence level who were considered nonadherent. For example, a nonadherent patient with an MPR of 45% was assumed to increase their adherence by 2% to 47%.

RESULTS

- The data show that increased adherence results in savings in some, but not all TCs when considering either disease-specific or all-cause resources (Figures 6 and 7).
- Users of depression, diabetes, and hi blood chol medications have higher inpatient admission and/or ER visit expenditures when nonadherent. However, these increases in the disease-specific inpatient admission and ER visit expenditures were offset by lower medication expenditure, such that lower net disease-specific expenditure resulted among the nonadherent patients compared with adherent patients across allTCs (Figure 8).
- Nonadherence resulted in increased all-cause total expenditures in diabetes, hi blood chol, and hi BP/heart by \$241 million, \$150 million, and \$47 million per year, respectively (Figure 9).
- Increasing adherence by 2% reduced net annual all-cause expenditures by 11% to 21% across three TCs (Figure 10).

CONCLUSIONS

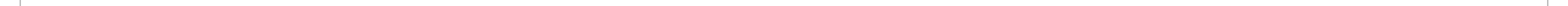
• Medication nonadherence can be costly to payers. Increasing adherence even by small amounts in someTCs may result in significant savings.

REFERENCES

- 1. Task Force for Compliance. Noncompliance with medication regimens: an economic tragedy with important implications for health care reform. Baltimore, MD; 1994.
- 2. Agency for Healthcare Research and Quality. Medical expenditure panel survey household component. 2010. Available at: http://www.meps.ahrq.gov/mepsweb/ data_stats/download_data_files.jsp. Accessed March 17, 2011.
- 3. Hess LM, Raebel MA, Conner DA, Malone DC. Measurement of adherence in pharmacy administrative databases: a proposal for standard definitions and preferred measures. Ann Pharmacother. 2006 Jul-Aug;40(7-8):1280-88.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Sean Candrilli for his review of the MEPS analysis and for presenting this poster at the ISPOR 14th Annual European Conference.


CONTACT INFORMATION

Katherine A Hicks, MSc Director of Health Economics

RTI Health Solutions 200 Park Offices Drive Research Triangle Park, NC 27709

Phone: +1.919.541.6533 Fax: +1.919.541.7222 E-mail: khicks@rti.org

Presented at: ISPOR 14th Annual European Conference November 5-8, 2011 Madrid, Spain

