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With increasing attention on the contribution of ecosystems to human well-being, there is a need for tools that
integrate ecological and economic models for valuing ecosystem services. To address this, we develop a protocol
for linking ecological processes and outcomes to human preferences, which combines environmental modeling,
expert elicitation, and nonmarket valuationmethods. Our application values reductions in nutrient loads to lakes
in the southeastern US. The innovation centers on how biochemical measures of water quality (e.g., chlorophyll
a) are translated into terms that are meaningful to individuals who derive ecosystem services from them. Using
expert elicitation data, we estimate a model linking changes in biochemical measures to an index of eutrophica-
tion in lakes. We then develop a stated preference survey including (a) detailed descriptions of the perceptible
outcomes – e.g., water color, clarity – associated each eutrophication index level; and (b) policy scenarios involv-
ing state-level changes in lake eutrophication conditions. We estimate a function that predicts households' will-
ingness to pay for changes in lake water quality. We demonstrate the protocol through a case study examining
the benefits of lake quality improvement in Virginia as a result of recent policies to reduce nutrient loads in
the Chesapeake Bay watershed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ecosystems provide valuable services to households and businesses,
but a number of challenges make it difficult to estimate the monetary
value of these services.While economists have developed an impressive
collection of methods for valuing nonmarket and public goods, practical
applications that seek to value changes in ecosystem services face addi-
tional challenges. For example, quantitativemeasurements of ecosystem
health (such as nutrient concentrations in surface water) are typically
not good descriptors of the actual services that people perceive and de-
rive value from. Nonetheless regulators usually set management goals
based on chemical, physical, or biological properties of the resource.
This creates disconnects between how ecosystem quality is assessed,
how ecosystem services are defined, and the way that economists go
about measuring the value of these services. Many otherwise carefully
executed ecosystem service valuation studies do not deliver on their
policy promise, owing to this difficulty in precisely linking changes in
the valued services to the physical outcomes of a policy shock.

Our research addresses this problem by developing an integrated
ecosystem services valuation protocol that connects changes in ecosys-
tem health indicators to changes in economic value in a way that main-
tains direct linkages between physical measures, service levels, and
household preferences. Our specific application values reductions in nu-
trient loadings to freshwater lakes in the southeastern United States.
The US Environmental Protection Agency (EPA) has encouraged states
to set numeric criteria for nitrogen, phosphorus, and chlorophyll a con-
centrations as a way of controlling eutrophication (Kenney et al., 2009;
Reckhow et al., 2005; USEPA, 2010). Jurisdictions must also develop
Total MaximumDaily Load (TMDL) limits for impaired waters. The eco-
nomic benefits that these ambient standards and TMDLs provide, how-
ever, arise from people's preferences and the underlying services they
receive. Thus while quantitative indicators are invaluable for assessing
ecosystem health and establishing policy objectives, the benefits they
provide can be difficult to conceptualize. In contrast descriptive narra-
tives of quality improvements are useful for communicating the possi-
bility of benefits, but their imprecise nature is what led the EPA to
encourage the development of numeric criteria in the first place.

In this paper we present an approach that combines water quality
modeling, expert elicitation, and a stated preference survey to quantify
the linkages between changes in nutrient loadings, changes in ambient
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concentrations, changes in ecosystem service levels, and ultimately
nonmarket values for quality improvements. Expert elicitation is a for-
mal process used to systematically elicit and quantify judgments from
scientific experts. In our case we used expert elicitation to collect data
from water quality experts and estimate a functional relationship
linking observations of specific ambient water quality parameters in
the study area lakes to a five-level, multi-attribute eutrophication
index. Because eutrophication manifests itself differently in different
systems, we used expert elicitation to specifically establish this relation-
ship for reservoirs in the Southeastern region of the United States. Each
level of the index was described to experts using narrative descriptions
for a defined set of attributes, including clarity, color, algae, aquatic life,
and odor. Then, to understand how the public values different eutrophi-
cation states and quantify their willingness to pay for less-eutrophic
conditions, we applied a stated preference approach. Our stated prefer-
ence survey took the narrative descriptions from the expert elicitation
and modified them to be more accessible to a non-technical audience
and, at the same time, consistent with the descriptions presented to ex-
perts. Although numeric water quality indexes have been widely used
in previous economic valuation studies (Van Houtven et al., 2007),
one of themain advantages of this index approach is the direct connec-
tion it provides between experts' and lay persons' understanding of
water quality. Importantly, the year-long development of our stated
preference survey involved substantial back and forth between the
water quality experts who developed and conducted the expert elicita-
tion and reviewed the stated preference scenarios, the economists who
were translating their knowledge into survey-appropriate descriptions,
and individuals from the lay public who were involved in focus groups
and pretest interviews. This combination of expert elicitation and stated
preference surveying offers an innovative approach for linking changes
in chemical and biological water quality parameters, which are typically
used as measurable indicators of ecosystem health, with attributes that
are more closely linked to the types of ecosystem services that individ-
uals recognize and value in lake water quality. It also provides an ap-
proach for linking water quality and preferences that we expect will
be more explicit and transparent for policy makers.

The remainder of the paper is organized as follows. In Section 2 we
place our research in context by reviewing background information
that is relevant for ecosystem services valuation as related to water
quality. In Section 3 we present our analytical framework in three sub-
sections that describe (a) the water quality models; (b) expert elicita-
tion analysis; and (c) the process used to translate the experts'
understanding into the descriptions used in the survey. It also presents
the details of our survey and econometric models, and Section 4 con-
tains a case study. The policy context for our case study is the recently
promulgated TMDL limits established by EPA for the Chesapeake Bay,
which has received considerable regulatory and media attention. In ad-
dition to improving conditions in the Bay estuary, the rule is expected to
reduce nutrient loads and improve water quality throughout the Bay's
64,000 square mile watershed. We examine the benefits of the expect-
ed lake water quality improvements in the state of Virginia, much of
which lies within the Bay watershed. We find that the Chesapeake
TMDL will improve lake water quality in Virginia by an amount suffi-
cient to generate $184 million per year in aggregate benefits for resi-
dents of the state. Although this estimate is of policy interest, the main

objective of the case study is to illustrate a common ecosystem service
valuation problem, and to demonstrate the advantages of our approach
for addressing it. The paper's main contribution therefore is the devel-
opment of an integrated protocol combining expert elicitation and stat-
ed preference techniques, which would be of use in many practical
valuation contexts. We conclude the paper in Section 5 by discussing
in greater detail the potential of our approach to advance the practice
of ecosystem service valuation generally.

2. Background

The basic ecosystem service valuation problem we address is illus-
trated by Fig. 1, which traces how a change in an environmental input
filters through the system to produce a change in human well-being.
Note that the change in actual services and behavior (box 3) is preceded
by physical changes that are not generally observed by households. For
example, the process begins with a shock to an environmental input to
the ecosystem, such as nitrogen loading in our study (box 1). This pro-
duces a physical change in the ecosystem (box 2), which is measured
by an indicator such as nutrient concentrations in the water. Scientific
assessment and regulatory decisions are usually based on the informa-
tion in box 2, but this is still a secondary outcome for purposes of envi-
ronmental valuation. It is the perceptible change in the ecosystem and
the resulting change in the quantity or quality of services derived
from the ecosystem (shown in box 3) that directly impact human
well-being. In the case of nutrients, the perceptible ecosystem changes
relate to observable features of water bodies, such as color, clarity,
smell, and abundance of aquatic life. Box 4 illustrates the final step
linking a change in services to preferences and monetary value.

Many studies have addressed a subset of the individual steps shown
in Fig. 1. However, relatively fewhave developed protocols that formally
link all four components. For example, there is a large literature apply-
ing stated preference methods to value changes in water quality (see
Johnston et al., 2005; Van Houtven et al., 2007 for summaries of this lit-
erature). Because the water quality changes described in the surveys
must be expressed in terms that are understandable to a non-
technical audience, they are often non-specific in their correspondence
to measurable biophysical parameters. A good example of this is the
lake visitation choice experiment used by Roberts et al. (2008), which
includes an attribute for the presence/absence (and risk) of an algae
bloom at the destination. The study addresses boxes 3 and 4 quite effec-
tively, but by abstracting from boxes 1 and 2 it does not allow policy
analysis of how changes in nutrient levels map to changes in the likeli-
hood that a bloomwill appear. Other studies (e.g. Egan et al., 2009) have
used revealed preferencemethods to directly linkmeasuredwater qual-
ity to behavior. This approach connects boxes 2 and 4, thereby leaving
latent the process by which individuals translate ecosystem quality
into ecosystem services. While this strategy is attractive in its ability
to directly connect policy targets to valuation, identification and inter-
pretation challenges can be substantial due to uncertainty about the
connections underlying the reduced form relationship. Finally, several
studies have employed an approach inwhichmultiple pollution param-
eters are aggregated to a one dimensional index of water quality
(USEPA, 2002, 2009a,b). The best known technique characterizes qual-
ity along the 0 to 100 scale, based on the results of an expert elicitation
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Fig. 1. Measuring the value of a change in ecosystem services.
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study by McClelland (1974). To apply this 100-point index for water
quality valuation,Mitchell and Carson (1984) developed awater quality
ladder approach (see, for example, Smith and Desvousges (1986) and
Edwards and Anderson (1987) for other applications of this ladder).
This approach specifies theminimum index levels at which water qual-
ity is suitable for specific human uses — i.e., boatable, fishable, and
swimmable. However, one of the main limitations of this approach is
that the interpretation of these primarily recreation-based use catego-
ries can be fairly subjective, in that different peoplemay associate differ-
ent water quality conditions (or even a different ranking of conditions)
with these activities. Instead of defining biophysical attributes that are
understandable to the lay public and then allowing individuals to decide
how these attributes affect the ecosystem services they care about, the
approach directly defines the uses and implied ecosystem services.
Thus the link between boxes 2 and 3 may be non-unique (i.e., individ-
uals may have different interpretations of the water quality changes
being valued).

For this study we developed a water quality indexing system for
nutrient-related pollution in lakes that describes five categories of eu-
trophication.1 A key advantage of this indexing system over previous
applications was that it was specifically designed so that it could be
linked backward (using the results of an expert elicitation) to a set of
commonly monitored and modeled water quality parameters and for-
ward (using a stated preference survey) to human values through ver-
bal and visual descriptions of biophysical water quality conditions.
Importantly, these conditions were carefully matched to the descrip-
tions seen by experts in the elicitation exercise. The indexwas therefore
used to connect boxes 2 and 3 in Fig. 1, by linking outputs from the ex-
pert elicitation to the descriptions used in the stated preference survey.

In our stated preference survey, we then scaled this index system to
the state level by examining the percentage of lakes in the state that fall
into each category, and we analyze the stated preference data by valu-
ing changes in the expected index value, which we computed using
survey-induced variation in the distribution of lakes in each eutrophica-
tion category. While this approach draws on aspects of other stated
preference studies that have focused on changes in lake water quality
in the US (Banzhaf et al., 2006; Herriges et al., 2010; Viscusi et al.,
2008), it is to our knowledge the only study to integrate and
operationalize all the steps in Fig. 1 in a way specifically designed to
maintain consistency among the various elements.

3. Analytical Framework

Our approach to valuing changes in ecosystem services combines
water quality modeling and expert elicitation with stated preference
survey methods. Fig. 2 illustrates our main objective and provides an
overview of the steps we use. Specifically, we want to map different nu-
trient load scenarios to indicators of surface water quality, and then link

these indicators to ecosystem services and finally economic values. To
accomplish these objectives, we applied the four main modules shown
in Fig. 2, which generally correspond with the four elements (boxes)
shown in Fig. 1. Thesemodules are described in this and thenext section.

3.1. Module 1 — Water Quality Model

A number of existing water quality models can be used to estimate
lake water quality conditions resulting from alternative nutrient load
scenarios. Rather than developing a new model, the main objective of
module 1 was to select an existing model that is compatible with the
other aspects of our protocol. To map into our expert elicitation the
main criterion was that the water quality model needed to estimate
concentrations of total nitrogen, total phosphorus, and chlorophyll a
as a function of basin-wide nutrient loads. For compatibility with our
main valuation task the model needed to operate at a scale allowing
prediction for most of the main lakes and reservoirs within a given
state. Finally, to demonstrate the utility of our approach for policy pur-
posesweneeded amodel that could incorporate nutrient load estimates
based on specific policy scenarios.

Based on these considerations, we apply the SPARROW(Moore et al.,
2011) model, which uses non-linear regression to develop an empirical
relationship between long term mean nutrient flux (kg/yr), predictor
variables such as estimated nutrient inputs (based on land cover from
the 2002 National Land Cover Database and location), soil type, precip-
itation, and estimated loss factors (land to water delivery fractions and
in-stream/in-basin attenuation). Additional details on our specific use of
the SPARROWmodel for our Chesapeake Bay watershed application are
included in Section 5.

3.2. Module 2 — Expert Elicitation

The goal of this module is to estimate a function linking data for mul-
tiple water quality parameters in freshwater lakes to an ordinal index of
eutrophic conditions. Specifically, the function will take as input a vector
of water quality parameters obtained from a monitoring network or
modeling exercise, andproduce as output a predicted value for the eutro-
phication index. Characteristics of eutrophication such as increased algal
growth, reduced water clarity, coloration of surface water, unpleasant
odors, and impacts on aquatic life are perceptible to users and therefore
influence decisions and the economic value derived from a lake. Howev-
er, no single variable is always the best predictor of eutrophication or tro-
phic status because trophic state manifests itself differently in different
locations. Because there are not established models for man-made
lakes in the Southeastern region, expert elicitation helps to assure that
we use scientific expert judgment to map multiple water quality vari-
ables to these eutrophication categories in the region of interest.

To develop the function we use data from an expert elicitation con-
ducted by Kenney (2007). Kenney conducted the elicitationwith 14 ex-
perts familiar with North Carolina lake water quality. These experts
were asked to consider how values for seven water quality parameters
presented in a controlled experiment map into five levels of trophic

1 Eutrophication is a process that occurs in nutrient enriched lakes, which results in al-
gal growth, reduced water clarity, coloration of surface water, unpleasant odors, and im-
pacts on aquatic life.
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Fig. 2. Overview of approach.
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status. Specifically, the experts were asked to consider how concentra-
tions of total nitrogen, total inorganic nitrogen, total phosphorus, chlo-
rophyll a, and dissolved oxygen, as well as turbidity and Secchi depth,
map into the five pre-defined trophic state levels described in Table 1.

Each expert was presented with rows of water quality data for the
seven parameters, and for each row the expert was asked the following
question2:

Imagine 100 different lakes in the (named NC) eco-region with the
characteristics specified by the given data row. Of the 100 lakes,
howmany of the lakes would you expect to fall into each of the (five
categories of eutrophication)?

Through this question experts were asked to draw on their pro-
fessional understanding of eutrophication processes and make
their best scientific judgments regarding the specific connection be-
tween (a) water quality parameters; and (b) eutrophic water quality
outcomes as described by the attributes in Table 1. Thus the task was
narrowly focused on the participants' area of expertise. The experts
were each given 100 rows of data that were designed to reflect realistic
combinations of parameter values, most of which were actual observa-
tions taken from reservoirs in the state. Each expert responded to 50
data rows that were the same across all experts and 50 data rows that
varied across experts according to the specific eco-region with which
they were most familiar.

The actual elicitation process unfolded in three steps, in accordance
with accepted best practice (Morgan andHenrion, 1990). Each stepwas
presented separately and all parts were conducted for all the experts
who participated. The first part included a semi-structured interview
about eutrophication processes and designated use impairment, as
well as a discussion on the use of expert judgment in the project. In
the second part, the expert provided his or her judgments on the data
rows described above. The elicitor worked through the first few cases
with the expert until the elicitor judged that the expert understood
the elicitation survey, could answer the questions in a manner consis-
tent with their expert understanding, and felt comfortable working
through the remaining cases individually. The third step involved follow
up anddebriefing. For example, expertswere asked to look at a subset of
their data rows and describe why they made a particular assessment. If
the expert saw an error in their assessment, he or she was encouraged
to make a correction to more accurately reflect her belief about the tro-
phic state category. The three steps in total took 6 to 8 h of the expert's
time. An example of how a single expert responded to a single row of
data is shown in Table 2.

The expert elicitation provided 1400 rows of explanatory and re-
sponse variables similar to the example in Table 2. The experts' rankings
are an example of ordinal data — discrete outcomes that have a natural
ranking but for which there is no meaningful scale. To summarize ex-
pert responses across the 1400 observations, we first select the rank
that received the highest proportion of the expert's distribution. Across
the full sample of responses the average rank is approximately three,
and a standard error of over one suggests there is usable variability in

the data among experts' responses. At the same time, there is evidence
of consistency in responses across experts. For example, for the 700 ob-
servationswhere all of the experts saw the same 50 rows of water qual-
ity data, the average pairwise correlation between the 14 experts was
0.57 and over 72% of these correlations were above 0.5.

The objective of this module is to use statistical modeling to relate
the values of the water quality parameters to the full ordinal outcomes
provided by experts, and to estimate a functional relationship that can
be used as a predictive model for the ordinal outcomes. To address
this objective, we apply an ordered logit model, which is a commonly
used approach for analyzing ordinal data and has been used in other ex-
pert elicitation analyses related to water resources (e.g., Sonneveld and
Albersen, 1999). We also explored other modeling approaches such as
structural equation modeling and binomial regressions (Kenney,
2007; Phaneuf et al., 2009); however, we concluded that the ordered
logit method was best suited for meeting the objectives of this study.

To estimate our ordered logit models, a transformation of the raw
data is needed. Recall that our experts provided a distribution (i.e. the
proportion of lakes that would fall into each category) of ordinal ranks,
rather than a single rank, as is needed for this model. We used the full
distribution of experts' responses by expanding each response into ob-
servations equal to the number of categories with positive (i.e., non-
zero) distribution mass. Each of these 3918 observations was given
an outcome value corresponding to a category with positive mass,
and sample weights based on the proportion of lakes assigned to
that category.3

Table 3 presents results from three specifications of the weighted or-
dered logitmodel. In all instances the standard errors shown in parenthe-
ses are clustered to reflect the likely correlation among judgments from
the same expert. Model 1 contains all seven of thewater quality variables
presented to the experts. The coefficient estimates are not comparable in
magnitude, but their signs do have a direct interpretation. A positive sign
suggests that a higher level of the variable pushes the ranking higher –
towards a worse trophic status – and a negative coefficient means that
higher levels of the variable are associated with a better (lower index
number) trophic status. Based on this interpretation all of the estimated
coefficients have sensible signs. As regards statistical performance, most
coefficient estimates are significant at a 5% level, with the exception of
both nitrogen types and dissolved oxygen. The former likely suggests
total nitrogen and total inorganic nitrogen were redundant sources of
information for the experts. The latter reflects the fact that surface dis-
solved oxygen (the variety presented) is less relevant than other oxygen
measures for predicting trophic status. A Wald test that the coefficients
on total inorganic nitrogen and dissolved oxygen are jointly zero fails to
reject the null hypothesis (χ2(2) = 3.24, p-value = 0.197).

Given these findings, model 2 examines coefficient estimates when
inorganic nitrogen and dissolved oxygen are excluded. We find that all
remaining coefficients are now significant, and the Akaike Information
Criteria (AIC) statistics suggest only a small loss in model fit.4 Model 3
is motivated by the practical requirements of linking this model to

Table 1
Trophic State/eutrophication categories.

Level Water clarity Color Algae Nutrient levels Oxygen Odor Aquatic life

1 Excellent None Very little Very low Very high No Very healthy, abundant
2 Good Little Little Low High Little Healthy, abundant
3 Fair Some Moderate Moderate Moderate Little Somewhat healthy, abundant
4 Poor Noticeable High High Low Noticeable Unhealthy, scarce
5 Poor Considerable Very high Very high Low to no Strong offensive Unhealthy, scarce or none present

2 Each expert answered this question for the specific North Carolina eco-region in
which they were most familiar. The eco-regions include Coastal (4 experts), Southeastern
Plains (1 expert), Piedmont (6 experts), and Blue Ridge (3 experts).

3 For example, for the response shown in Table 2 three observations are derived: one
each recording index values 2, 3, and 4. The weights assigned to these in estimation are
0.10, 0.50, and 0.40, respectively. Additional discussion of the expert elicitation data and
our different modeling approaches is contained in Phaneuf et al. (2009).

4 For model 1 AIC1 = 9856.22, and for model 2 AIC2 = 9857.89.
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SPARROWmodel outputs, which do not include Secchi depth or turbid-
ity. When these two variables are excluded, we find that all three re-
maining coefficients are intuitively signed and significant; however, a
Wald test suggests a statistically significant loss of explanatory power
from their exclusion (χ2(2) = 3.54, p-value b 0.001). In all models,
we can also reject with a high level of significance (p b 0.01) the hy-
potheses that any pair of “cut” threshold values were equal, which indi-
cates no evidence to support combining two or more trophic categories
into one.

The results in Table 3 allow us to predict a lake's trophic index based
on the values of selected water quality parameters. In particular, model
2 is a function with four inputs (concentration levels of total nitrogen,
total phosphorus, chlorophyll a, and turbidity) that produces as output
the probabilities p1,…,p5, which describe the likelihood that the lake is
in each of the five categories given in Table 1, conditional on the values
for the four inputs. For example, when we use the concentrations of ni-
trogen, phosphorus, and chlorophyll a and turbidity shown in Table 2 as
input, our model predicts the following probabilities: p1 = 0.038,
p2 = 0.116, p3 = 0.5044, p4 = 0.322, p5 = 0.021. According to these
results, the lake would have the highest probability of being in the tro-
phic category 3.

3.3. Module 3 — Survey Development

In addition to understanding how experts relate observed water
quality data to trophic state categories, we needed to understand the
public's preferences for improved water quality. For this we designed

and implemented a stated preference survey to estimate households'
values for improving nutrient-related water quality in lakes in their
home state. We describe the survey in general in the following section.
Herewe focus on one of its key elements: our translation of themain el-
ements of Table 1 into terms that would be meaningful to the general
public, while also maintaining consistency with the experts' scientific
understanding of thefive trophic status levels. To accomplish thiswe fo-
cused on five attributes of lakes in the southeastern US – color, clarity,
fish, algal blooms, and odor – that we concludedwere themost relevant
indicators of the final ecosystem services conveyed by lakes to individ-
uals. This conclusion was based on three separate focus groups, which
confirmed that these attributes are (a) directly observed and easily un-
derstood by the general public; and (b) salient to individuals in the
sense that their levels influence preference rankings of different lakes.
We did not include the attributes ‘nutrient levels’ or ‘oxygen’ because
we judged them to be largely unobservable and intermediate to the fea-
tures of lakes over which preferences are defined.

Using focus groups and the simultaneous advice of water quality sci-
entists we developed descriptions of the five main attributes – color,
clarity, fish, algal blooms, and odor – and defined discrete levels for
each attribute. We then used the attributes and their levels to define
five water quality categories, which corresponded directly to the five
trophic index levels used by the water quality experts. Table 4 shows
the summary level descriptions included in the survey, where the qual-
ity levels are labeled A (best) to E (worst) and correspond to the rank-
ings 1 (least trophic) to 5 (most trophic) in Table 1. The five quality
levels in Table 4 constitute our definitions of how the quality of services
provided by freshwater lakes is impacted by the underlying health of
the ecosystem. To promote respondents' understanding of the index,
the online survey first included separate descriptions for each of the
five attributes and their levels, before grouping them into index catego-
ries as in Table 4. Photographs were used to show variations in lake
color and clarity, aswell as different sizes and locations of algae blooms.
In addition, to further encourage respondents to examine and consider
themeaningof each quality (trophic) level, the survey asked them to se-
lect the quality categories that they believed were most common for
lakes in their state.5

It is important to note that throughout the stated preference survey,
we maintained the direct connection between water quality categories
(A through E) andwater quality attributes (color, clarity, etc.) as shown
in Table 4. In other words, thewater quality attributes always varied to-
gether in the pattern shown in Table 4 and never independently from
one another. This design feature was selected for the following reasons.
First, the attributes are highly correlated in practice. Tomaintain realism
any designed variation in the attributes would therefore have been
constrained to lie within a limited range. Second, it maintains direct
and important consistency with the expert elicitation design and analy-
sis. In particular, Module 2 does not accommodate lake attribute combi-
nations that differ from the patterns shown in Tables 1 and 4. Third, it
reduced the cognitive burden on respondents to have them focus on

Table 2
Example of expert response to main elicitation task (in italics).

Parameter: Photic total nitrogen Photic total inorganic nitrogen Photic total phosphorus Photic chlorophyll a Surface dissolved oxygen Secchi depth Photic turbidity

Value: 0.46 mg/l 0.02 mg/l 0.03 mg/l 38 μg/l 6.3 mg/l 1.3 m 3.9 NTU

Ranking on trophic index 1 2 3 4 5

Number of lakes 0 10 50 40 0

Table 3
Ordered logit regression analysis of responses to expert elicitation.

Model 1 Model 2 Model 3

Total nitrogen 0.282 0.389⁎⁎ 1.244⁎⁎⁎
(0.199) (0.169) (0.195)

Total inorganic nitrogen 0.582⁎
(0.339)

Total phosphorus 7.401⁎⁎⁎ 7.836⁎⁎⁎ 9.289⁎⁎⁎
(1.726) (1.787) (1.924)

Chlorophyll a 0.0590⁎⁎⁎ 0.0588⁎⁎⁎ 0.0574⁎⁎⁎
(0.00703) (0.00652) (0.00622)

Dissolved oxygen 0.00723
(0.0454)

Secchi depth −0.552⁎⁎⁎ −0.537⁎⁎⁎
(0.0924) (0.0939)

Turbidity 0.0152⁎⁎ 0.0171⁎⁎⁎
(0.00675) (0.00620)

Cut 1 −0.936 −0.944⁎⁎ 0.241
(0.598) (0.436) (0.314)

Cut 2 0.689 0.681⁎ 1.775⁎⁎⁎
(0.472) (0.348) (0.286)

Cut 3 2.651⁎⁎⁎ 2.645⁎⁎⁎ 3.654⁎⁎⁎
(0.410) (0.340) (0.322)

Cut 4 4.940⁎⁎⁎ 4.925⁎⁎⁎ 5.935⁎⁎⁎
(0.438) (0.388) (0.405)

Log pseudolikelihood −4917.11 −4919.95 −5035.82
Pseudo R-squared 0.1645 0.1640 0.1443
Observations 3918 3918 3918

Standard errors are in parentheses.
⁎ p b 0.10.
⁎⁎ p b 0.05.
⁎⁎⁎ p b 0.01.

5 Phaneuf et al. (2013) contains a detailed description of the survey development pro-
cess. To view the survey instrument and technical documents associated with the project
go to www.epa.gov/nandppolicy/links.html, and click on the ‘grants’ folder for access to
the ‘Nutrients Benefits Valuation’ project information.
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five types of lakes rather than on a much larger variety of lakes with
varying attributes.

3.4. Module 4 — Stated Preference Analysis

The sample frame for our stated preference survey was households
in the eight southeastern states that contain the largest portion of EPA's
Nutrient Eco-region IX (USEPA, 2000): Alabama, Georgia, Kentucky,
Mississippi, North Carolina, South Carolina, Tennessee, and Virginia.
Within this region, we consider three states – North Carolina, South
Carolina, andVirginia – to be the core of our study area, because it iswith-
in this region that we expect module 2 (the expert elicitation) to provide
the most reliable predictions. We used the market research firm Knowl-
edge Networks (KN) to execute a web-based survey using a nationally-
representative sample from members of their household panel.6

The survey vehicle contained several sections. Our focus here is on a
contingent valuation (CV) application that was one of two major valua-
tion components that were included. The objective of the CV component
was tomeasure people'swillingness to pay (WTP) to shift the distribution
of lake water quality in their state from baseline conditions to improved
conditions, basedon ahypothetical public program.7 After receiving infor-
mation on nutrient pollution and the categories of lakes shown in Table 4
respondents were presented with the following program description:

Imagine that state agencies in charge of water resources in HOME
STATE are considering a program to improve lake water quality. Be-
cause nitrogen and phosphorus come from many different man-
made sources, there are many ways to control them. Under the pro-
gram being considered, efforts to reduce nitrogen and phosphorus
would be spread among many different groups. For example,

• sewage treatment plants would have to install better treatment
systems;

• residents using septic tanks would have to inspect these systems for
leakage;

• towns and housing developments would have to install improved
systems for managing water runoff from storms;

• farms would have to reduce fertilizer runoff from fields and improve
the containment of animal waste.

Accomplishing the valuation task required that we communicate
both the baseline (without the program) conditions and conditions
resulting from a policy change (with the program).We used the follow-
ing text and graphical format to describe the change:

The diagram below compares projected lake conditions in HOME
STATE in 10 years, with and without the program. The bars in
grey show what lakes would be like without the program. If no
action is taken to control nitrogen and phosphorus, only 20% (2
out of every 10 lakes) would be in one of the best two categories
(A or B). The bars in blue show what lakes would be like with the
program. X% would be in one of the best two categories. The ar-
rows show how the percent of lakes in the best two categories
would increase, and the percent in the other categories would
decrease.

The same baseline conditionwas presented to all respondents; how-
ever, four different versions of the ‘with program’ description were ran-
domly assigned and presented to respondents. Table 5 shows the
distributions that were presented in each version, and Fig. 3 provides
an example of the graphic respondents received.

6 The KN panel has been effectively used in several economic studies, including Viscusi
et al. (2008) forwater quality. Cameron andDeShazo (2013) provide amore recent exam-
ple; their technical appendix contains a careful discussion of theKNsample characteristics.
Several studies have investigated the potential for nonresponse bias in stated preference
surveys administered through KN. Studies that investigated various sources of nonre-
sponse bias have found some evidence of sample selection in the demographic character-
istics of the KN panel. However, the studies have found little evidence that the sample
composition results in biased WTP estimates, and the differences that have been found
were judged to be small (see Viscusi et al., 2008; Cameron and DeShazo, 2013).

7 We did not use a conjoint choice experiment for this analysis because (1) the water
quality attributes (color, clarity, etc.) do not vary independently in our design (for reasons
previously discussed) and (2) the state-level percentages of lakes in each eutrophication
category (A–E) also cannot vary independently from each other. In Phaneuf et al. (2013)
we discuss a related choice experiment that was designed at the individual lake level.

Table 5
State-level distributions of water quality levels shown in the CV survey.

Trophic
category/index

“Without the program” “With the program” versions

Baseline I II III IV

A/1 5% 10% 15% 10% 20%
B/2 25% 25% 35% 55% 45%
C/3 50% 50% 40% 30% 30%
D/4 15% 15% 10% 5% 5%
E/5 5% 0% 0% 0% 0%
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Fig. 3. Graphic used to show change in water quality.

Table 4
Abbreviated water quality descriptions for the SP survey.a

Category A B C D E

Color Blue Blue/brown Brown/green Brown/green Green
Clarity Can see 5 ft deep or more Can see 2–5 ft deep Can see 1–2 ft deep Can see at most 1 ft deep Can see at most 1 ft deep
Fish Abundant game fish and

a few rough fish
Many game fish and a few
rough fish

Many rough fish and a
few game fish

A few rough fish but no
game fish

A few rough fish but no game fish

Algae blooms Never occur Small areas near shore;
some years, 1–2 days

Small areas near shore;
most years, 1 week

Large areas near shore;
once a year, 2–3 weeks

Large, thick areas near shore;
every year, most of summer

Odor No unpleasant odors 1–2 days a year, faint odor 1–2 days a year, faint odor 3–4 days a year, noticeable odor Several days a year, noticeable odor

a The survey instrument provided the respondents with more details on each category and level. Categories A to E correspond to levels 1 to 5 in Table 1.
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To elicit households' WTP we used a voting referendum dichoto-
mous choice format, based in part on commonly recommended prac-
tices for CV studies (Arrow et al., 1993; Kling et al., 2012). The
payment vehicle for the program was defined as a cost of living
increase8 using the following language:

The changes required by the program would have a cost for all
HOME STATE households. Some of the basic things people spend
money on would become more expensive. For example, for
homeowners, water bills or costs for maintaining septic systems
would go up. For renters, rent or utility bills would go up. Imagine
that for households like yours, starting next year, the programwould
permanently increase your cost of living by $V per year, or $V/12 per
month.

The bid amount Vwas randomly varied across respondent. Based in
part on pretests of the survey instrument, we selected the following four
annual bid values: $24, $120, $216, and $360. After responding to the
bid question respondents were asked to report the level of certainty
(i.e. very, somewhat, or not at all certain) that they felt about their
answer.9

In April and May of 2010 KN initiated the survey by inviting 1873
adultmembers of their panel in our target states to complete the survey.
KN recruits their panel of US households through random-digit dialing
and,more recently, through address-based sampling.10 In total, 1327 in-
dividuals completed the survey, resulting in a 70.8% completion rate.
The full response rate for KN surveys is lower, due to nonresponse dur-
ing panel recruitment and attrition rates among panel participants.

Table 6 displays summary statistics for the sample of respondents.
Almost 60% of the sample was from the three main states – Virginia,
North Carolina, and South Carolina –with the remainder roughly evenly
divided between Alabama, Georgia, Kentucky, Mississippi, and Tennes-
see. As an indicator of familiarity with lake water quality we asked re-
spondents if they had made a day trip (i.e. without an overnight stay)
to a lake in the previous twelve months; 32% report making a lake
visit. Among those who had not made a day trip in the previous year
nearly 43% indicated they were ‘somewhat’ or ‘very’ like to do so in
the following twelve months.

Overall, 57% of respondents indicated theywould vote in favor of the
lake water quality improvement program in their state. As expected,
this percentage was inversely related to the annual payment. Among
those presented with the $24 annual payment 73% voted to contribute;
this fell to 42% for people presentedwith the $360 annual payment. This
declining percentage of votes is consistent with expectations and pro-
vides suggestive evidence that the bid design (range and number of
bids) was appropriate for estimating the marginal utility of income pa-
rameter (γ1 below). The certainty follow up responses suggested that
40% were ‘very certain’, 50% were ‘somewhat certain’, and 10% were
‘not certain at all’.

To analyze the responses to the referendum question, we use a util-
ity difference framework as our conceptual model. We assume people
vote for or against the program based on whether the program (includ-
ing its annual cost) provides an increase or decrease in utility compared
to conditionswithout the program. Given this our baseline utility differ-
ence model for respondent i is

ΔUi ¼ ΔVi þ εi ¼ γ1bidi þ α þ
XIV

j¼II

δ jZij þ βXi þ εi; i ¼ 1;…;N; ð1Þ

where bidi is the annual cost for the program presented to respondent
i, and the indicator variable Zij takes the value one if the respondent
answered the survey version with program j, for j = II, III, or IV, and
zero otherwise (program I is the omitted category, whose effect is
captured by the intercept term). The variable Xi represents a vector of
individual characteristics that may also affect the change in utility. To-
gether, these three components make up the systematic portion of the
change in utility (ΔV). If we assume that the random component εi fol-
lows a standard logistic distribution, the probability of voting for the
program is

Pr yesið Þ ¼ 1þ exp −ΔVið Þð Þ−1
; ð2Þ

8 A broad-based cost of living increase payment vehicle (rather than a targeted fee or
tax) was selected in order to be most consistent with the broad range and distribution
of pollution control measures included under the program. With this type of ‘payment’
it was also more realistic to define a permanent rather than a temporary increase in cost.
Similar broad-based payment vehicles have successfully been applied in other stated pref-
erence studies (Boyle et al., 1994; Viscusi et al., 2008), and inour pretestingwe did notfind
evidence of respondents rejecting this payment scenario.

9 Our survey also contained the usual methods for limiting hypothetical bias and en-
couraging truthful responses. A brief cheap talk script (Cummings and Taylor, 1999) was
included as a reminder of people's budget constraint, and consequentiality was stressed
at various points in the survey.
10 For more information on KN, see www.knowledgenetworks.com. If the household
does not have a computer, KN provides the household with a computer and internet ac-
cess. If the household does have a computer, KN pays for internet access. In return, the
households agree to take a specific number of surveys. KN controls the number of survey
invitations panel members receive. The sample for any particular survey is randomly se-
lected from KN's larger panel.

Table 6
Summary statistics for SP survey data (N = 1318).

Variable name Variable description Mean Std. Dev. Min Max

vote =1 if respondent voted for program 0.566 0.496 0 1
uncertain =1 if respondent is “very uncertain” about his/her vote 0.103 0.304 0 1
vote recode =vote, except replaced with 0 if uncertain = 1 0.524 0.500 0 1
vote certain =vote, except replaced with missing if uncertain = 1 0.585 0.493 0 1
bid bid value presented to respondent ($ per year) 180.7 122.4 24 360
program II =1 if respondent presented with program II 0.266 0.442 0 1
program III =1 if respondent presented with program III 0.246 0.431 0 1
program IV =1 if respondent presented with program IV 0.259 0.439 0 1
dquality change in water quality index from baseline to with-program conditions (absolute value) 0.645 0.185 0.35 0.85
income respondent's household income (104 2010 dollars) 6.285 4.506 0.25 20
college =1 if respondent took at least one single day trip to a lake last year 0.333 0.471 0 1
triplastyr =1 if respondent is a college graduate 0.324 0.468 0 1
tripnextyr =1 if triplastyr = 0 but respondent is “somewhat” or “very” likely to take a single day lake trip next year 0.289 0.454 0 1
va =1 if respondent lives in VA 0.165 0.371 0 1
nc =1 if respondent lives in NC 0.275 0.447 0 1
Age respondent's age 48.85 15.87 18 94
Female =1 if respondent is female 0.561 0.496 0 1
Married =1 if respondent is married 0.562 0.496 0 1
White =1 if respondent is White 0.737 0.441 0 1
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which implies that the expected willingness to pay for program j by
household i is

E WTPij

� �
¼ − α þ δ j þ βXi

� �
=γ1: ð3Þ

An alternative way of modeling the role of statewide changes in the
distribution of lakewater quality categories is to combine the categories
and percentages into a single percentage weighted average index as
follows

qual j ¼ 1� pAj
� �

þ 2� pBj
� �

þ 3� pCj
� �

þ 4� pDj
� �

þ 5� pEj
� �

; ð4Þ

where pj
q is the percentage of lakes in water quality category q (q = A,

B, C, D, E) under scenario j, where j = 0 is the baseline and j = I, II, III,
IV represents the four designed scenarios. This approach not only sim-
plifies the analysis, but it also imposes an assumed structure on prefer-
ences regarding the statewide distribution of lake water quality.

Using this assumption, the figures shown in Table 5 imply that the
baseline average index is qual0 = 3.05, while the improved average
index values are qualI = 2.70, qualII = 2.45, qualIII = 2.30, and qualIV =
2.20. Using this continuous average index for water quality our utility
difference model becomes

ΔUi ¼ γ1bidi þ δ1 ln Δquali þ 1ð Þ þ δ2 ln Δquali þ 1ð Þ � Xi þ α þ βXi þ εi;

ð5Þ

whereΔquali = qual0 − qualj is the improved quality level presented to
respondent i and we have used a log transformation. Table 6 shows that
the value of Δquali ranges from 0.35 to 0.85, with a mean value of 0.645.
For this model the expected WTP for a specific change in quality is

E WTPið Þ ¼ − δ1 ln Δqualþ 1ð Þ þ δ2 ln Δqualþ 1ð Þ � Xi þ γ þ βXi½ �=γ1: ð6Þ

Table 7 presents coefficient estimates for six different dichotomous
choice logit models. The first three columns correspond to the program
dummy variable specification in Eq. (1) and the last three columns cor-
respond to the continuous quality difference specification in Eq. (5). For
each specificationwe present sensitivity analyses that showhow the es-
timates changewhenwe control in differentways for responses report-
ed to have been ‘very uncertain’. Several studies have looked at the
relationship between the respondent's self-reported degree of certainty
about their answer and the potential for hypothetical bias (the differ-
ence between responses to a hypothetical scenario and a real choice).
Champ et al. (1997) and Blumenschein et al. (2008) both find evidence
of hypothetical bias among uncertain respondents. Respondents who
were certain of their responses showed little or no hypothetical bias.
We compare results for three different ways of coding the dependent
variable. In columns 1 and 4we use respondents' original votes (labeled
vote) without adjustment. In columns 2 and 5 we use a certainty-
adjusted vote (labeled vote recode) in which respondents who indicted
‘not certain at all’ where coded as ‘no’ votes, regardless of the actual
vote. In columns 3 and 6 we drop responses that indicated ‘not certain
at all’ (labeled vote certain), so that our analysis includes N = 1182 for
these models.

In each of the models the coefficient on the bid level is negative and
statistically significant at the p b 0.01 level, confirming that higher costs
reduce the utility of the program and the likelihood of a yes vote. The
first three columns show that income is not a statistically significant de-
terminant of people's vote; based on this and other statistical tests the
income variable (including interactions) was dropped from the later
three specifications. We also examined the effects of several other
respondent- and household-specific characteristics on preferences for
the program. We find that those who have used or expect to use lakes
for recreation and those with post-secondary education are statistically
more likely to vote in favor of the program. Other characteristics, such as
age, sex, race, and marital status were found to be individually and

Table 7
Logit regression analysis of CV survey responses.

Vote
(1)

Vote recoded
(2)

Vote certain
(3)

Vote
(4)

Vote recoded
(5)

Vote certain
(6)

bid −0.00391⁎⁎⁎ −0.00408⁎⁎⁎ −0.00423⁎⁎⁎ −0.00355⁎⁎⁎ −0.00389⁎⁎⁎ −0.00390⁎⁎⁎
(0.000480) (0.000484) (0.000515) (0.000460) (0.000465) (0.000494)

program II 0.0239 0.0107 0.0232
(0.164) (0.164) (0.175)

program III 0.202 0.297⁎ 0.326⁎
(0.168) (0.168) (0.180)

program IV 0.176 0.267 0.300⁎
(0.165) (0.166) (0.177)

ln dquality 1.038⁎⁎⁎ 0.636⁎⁎ 1.295⁎⁎⁎
(0.250) (0.248) (0.272)

income −0.0126 −0.00676 −0.0143
(0.0136) (0.0136) (0.0143)

college 0.290⁎⁎ 0.343⁎⁎⁎ 0.326⁎⁎
(0.130) (0.130) (0.138)

triplastyr 0.596⁎⁎⁎ 0.773⁎⁎⁎ 0.642⁎⁎⁎
(0.139) (0.139) (0.149)

tripnextyr 0.401⁎⁎⁎ 0.531⁎⁎⁎ 0.377⁎⁎
(0.141) (0.141) (0.151)

ln dquality ∗ college 0.500⁎⁎ 0.601⁎⁎ 0.547⁎⁎
(0.244) (0.243) (0.261)

ln dquality ∗ triplastyr 1.197⁎⁎⁎ 1.495⁎⁎⁎ 1.256⁎⁎⁎
(0.276) (0.276) (0.297)

ln dquality ∗ tripnextyr 0.785⁎⁎⁎ 1.006⁎⁎⁎ 0.714⁎⁎
(0.278) (0.279) (0.297)

Constant 0.560⁎⁎⁎ 0.219 0.612⁎⁎⁎
(0.182) (0.182) (0.197)

Observations 1318 1318 1182 1318 1318 1182

Standard errors are in parentheses.
⁎ p b 0.10.
⁎⁎ p b 0.05.
⁎⁎⁎ p b 0.01.
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jointly statistically insignificant and were therefore excluded from the
models that we present.

By varying the water quality program descriptions across respon-
dents we are able to examine how differences in the size of water qual-
ity improvements affect responses. In columns 1 through 3 the water
quality improvements are represented as program dummy variables,
where program I is the omitted category in the regressions. Because
water quality outcomes are better aswe progress fromprogram I topro-
gram IV the parameters on the dummy variables represent incremental
increases in the utility of a yes vote. Although the estimates have the ex-
pected positive sign, we find statistical significance for only one param-
eter in the vote recoded model and two parameters in the vote certain
model. These results provide some, but not strongly significant, evi-
dence of sensitivity to scope.We conclude from these positive estimates
that the variability in quality levels amongst the programswas likely too
small to detect statistically significant differences between each of them.
However, the variability is large enough to detect some differences in
preference between the programs with the smallest change (I) and
those with the largest changes (III and IV). While our design could
have varied the differences among programs to a larger degree, and
thereby increased the statistical power to identify scope effects without
functional form assumptions, we felt constrained by the need to main-
tain credibility in the size of the programs' deviations from the baseline.

Given this our last three sets of estimates use the specification in
Eq. (5), where the log transformation of the continuous quality attribute
imposes a smooth diminishing marginal utility of the quality change.11

Columns 4 through 6 restrict the constant term and the level effects of
the respondent characteristics to zero, because joint tests of these re-
strictions could not be rejected at the 0.10 significance level. An advan-
tage of this outcome is that it constraints the utility change (and by
extension, willingness to pay) to be zero when Δqual = 0, as would
be expected. In all three models the size of the water quality improve-
ment has a positive and statistically significant effect (p b 0.01) on the
utility difference. In addition, the interaction terms show that higher ed-
ucation and revealed and intended recreation use augment the positive
utility effects of an improvement.12

The results from all six models can be used to predict average will-
ingness to pay for thewater quality improvements. In addition, we esti-
mate confidence intervals for eachWTP estimate using the Krinsky and
Robb (1986) simulation procedure. For example, using the formula in
Eq. (3) and sample mean values for college, triplastyr, and tripnextyr
we find the following:

• For model 1 the annual WTP for program II is $233, with a 95% confi-
dence interval of ($176, $298).

• For models 2 and 3 the corresponding figures are $173 ($117, $230)
and $229 ($173, $293), respectively.

As expected, recoding all uncertain votes to ‘no’ inmodel 2 leads to a
lowermeanWTP. Using the formula in Eq. (6) and the samplemeans for
the interaction variables we find the following:

• For model 4 with Δqual = 0.6, which is equivalent to program II, our
meanWTPestimate is $241per year,with a 95% confidence interval of
($210, $283).

• For models 5 and 6 the corresponding estimates are $195 ($168,
$226) and $252 ($220, $296), respectively.

Thesewelfare estimates, our summary statistics, and several auxilia-
ry analyses provide evidence of the validity of our CV experiment (see
Kling et al., 2012, for a recent summary of validity concepts). The prob-
ability of a yes vote falls when the cost to respondents increases, and
scope effects are established qualitatively by the program dummy vari-
ablemodel and quantitatively by the continuous quality variablemodel.
The confidence intervals for welfare measures from the two specifica-
tions overlap when similar improvements are considered; this lends
support to the structure we have imposed on the continuous quality
model. Finally, summary statistics for our certainty follow up question
suggest respondents did not engage in ‘yea saying’. Among the people
who were uncertain about their answer, only 41% answered yes to the
referendum, while among those who were very certain 58% answered
yes. These validity checks suggest we can have some confidence in
using our model for policy predictions. In the case study that follows we
use model 5 from Table 7, because several studies (e.g. Blumenschein
et al., 2008;Morrison andBrown, 2009) have shown that recoding uncer-
tain responses as no votes provides estimates ofWTP that aremore likely
to match estimates from real payment experiments.

4. Case Study— Benefits of Improvements in VA Lakes from the
Chesapeake Bay TMDL

In this section we demonstrate how our protocol can be used to es-
timate the aggregate benefits of a specific statewide improvement in
water quality. We use the Chesapeake Bay TMDL and its expected im-
pacts on lake water quality in Virginia to conduct this demonstration.
To meet its requirements under the Clean Water Act, the EPA
established a TMDL for the Chesapeake Bay in 2010. This policy sets an-
nual load limits on the amount of nitrogen, phosphorus, and sediment
that may enter the Bay, with the objectives to be achieved by 2025.
The watershed for the Chesapeake Bay includes portions of Delaware,
Maryland, New York, Pennsylvania, Virginia,West Virginia, and the Dis-
trict of Columbia. These jurisdictions are responsible for developingWa-
tershed Implementation Plans that specify how and where the load
reductions will occur throughout the watershed. Although the federal
and state efforts are specifically designed to improve conditions in the
Bay, the resulting point and nonpoint source controls are also expected
to reduce loads and improve water quality in upstream water bodies.
We take advantage of the spatial overlap between our study area and
the Bay watershed and focus on improvements to lakes located within
the Virginia portion of the watershed. This spatial overlap is shown in
Fig. 4.

4.1. Modeling Water Quality Improvement in VA Lakes

To predict how lakes in the Chesapeake Baywatershedwill be affect-
ed by the TMDL,we used load reduction estimates from the Chesapeake
Bay Community Watershed Model (USEPA, 2010) and applied them to
the Northeast SPARROW model (Moore et al., 2011).13 The load reduc-
tion runswere conducted by the Chesapeake Bay ProgramOffice to sim-
ulate differences between pre-TMDL “baseline” conditions and those
expected to prevail with the TMDL fully implemented; they provide es-
timates of the percentage change in total nitrogen and total phosphorus
load to the sub-watershedswithin the larger Baywatershed. These esti-
mates describe changes in nutrient loads for streams in the Chesapeake
drainage and the Bay itself, but not for lakes.

The Northeast SPARROWmodel estimates average annual nitrogen
and phosphorus loads (kg/yr) to stream segments in the Mid-Atlantic
and Northeast regions of the United States (including the Chesapeake
drainage area) based on the long-term monitoring data and landscape

11 We found a similar declining effect in a model using a quadratic specification for the
water quality change; however, we selected the logarithmic form as our preferred speci-
fication because it eliminates utility decreases at higher levels of water quality changes.
12 The models in Table 7 were also estimated with a two-stage Heckman sample selec-
tion model using demographic data on KN panel members who were invited to take the
survey and declined. We did not find evidence of selection bias.

13 Although focused on the northeastern regions of the U.S., the Northeast SPARROW
model also includes the portion of Virginia that resides within the Chesapeake Bay
watershed.
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conditions for the year 2002. It is based on NHDplus version 1 (National
Hydrography Dataset) — a hydrologic network that includes represen-
tations of rivers, streams, lakes and other water bodies.14 The Northeast
SPARROWmodel is particularly useful for this analysis because its nutri-
ent load predictions can be used to estimate concentrations of nitrogen
and phosphorus in 2119 water bodies listed as lakes, ponds, and reser-
voirs (hereafter lakes) that are connected to the NHDplus network for
the Virginia section of the Chesapeake watershed.15 NHDplus also iden-
tifies 1208 lakes in Virginia that are outside the Chesapeake drainage;
lakes within the watershed therefore account for roughly 64% of all
lakes in Virginia.

Using SPARROW, we estimated nutrient loads to lakes on the
NHDplus network as the sum of nutrient exports for all stream seg-
ments immediately upstream of a lake, plus the sum of incremental
loads (loads originating within local catchments) for stream segments
within the lake. We estimated water flow as the sum of water exports
for all stream segments exiting the lakes. The nutrient concentrations
for the lakes were then estimated by dividing the nitrogen and phos-
phorus loads by the water flows. Using this process we found that the
predictions of long term average annual nutrient concentrations were
consistent with, but higher than, the values for mid-summer nutrient
concentrations observed via the 2007 National Lake Assessment
(USEPA, 2009a,b) for lakes in the region (Milstead et al., 2013). The dif-
ference was due to inter-annual and seasonal variation in loads, and
lower than expected estimates of nutrient retention in lakes from the
SPARROW model.16 If estimates of water residence time are available,
Vollenweider equations predicting lake nutrient concentrations from

input load and residence time can be used to more accurately estimate
nutrient concentrations in lakes (Reckhow, 1988; Vollenweider, 1975).
We estimated lake retention times from modeled lake volumes
(Hollister and Milstead, 2010; Hollister et al., 2011) and flow predic-
tions from SPARROW. These estimates, along with predicted nutrient
loads and observed nutrient concentration from the National Lake
Assessment,were used to develop and estimate Vollenweider equations
following the methods of Milstead et al. (2013), from which nitrogen
and phosphorus concentrations in the lakes were predicted.

To understand how the Chesapeake Bay TMDL will affect nutrient
concentration in lakes,we used theUSGeological Service SPARROWde-
cision support system, an online platform that facilitates querying and
scenario analysis of the Northeast and other SPARROWmodels (Booth
et al., 2011). To link the Chesapeake Bay Community Watershed
Model load reduction estimates to SPARROW, all NHDplus stream seg-
ments in the Chesapeake drainage were assigned sub-watersheds,
using a GIS intersect procedure.17 The percent changes in total nitrogen
and phosphorus predicted for the NHDplus stream segments were
submitted to the SPARROW decision support system for analysis. The
system returned predicted nitrogen and phosphorus loads for stream
segments based on the TMDL scenario, and these estimates were trans-
lated into lake nutrient concentrations as described above.

The final step was to estimate chlorophyll a concentrations. Using
National Lake Assessment observations from29 lakes in the Chesapeake
drainage, we developed a linear model of the relationship between ni-
trogen, phosphorus and chlorophyll a concentrations. The resulting re-
gression equation

log10 chlað Þ ¼ −0:48þ 0:88� log10 TPð Þ þ 0:09� log10 TNð Þ ð7Þ

was used to estimate Chlorophyll a concentrations for lakes in the
Chesapeake drainage under the baseline and TMDL scenarios.

14 See www.horizon-systems.com/NHDPlus/NHDPlusV1_home.php for details.
15 Most of the other 970 lakes that do not have SPARROW predictions are salt ponds,
ephemeral ponds, or isolated systems, which are not connected to the stream network
and therefore should not be included in this analysis.
16 Nutrient retention refers to the portion of nutrients entering a lake that accumulate in
the sediments, are consumed by plants and animals, or are lost to the system by chemical
processing. In lakes, nutrient retention depends largely on thewater residence time (flow/
volume). The SPARROW model derives an estimate of nutrient retention from the data,
but these estimates tend to be low for lakes with long residence times and high for those
with short residence times.

17 Stream segments that intersectedmore than one sub-watershedwere assigned to the
one that contained the largest proportion of its linear extent.

Fig. 4. Spatial overlap between Virginia and the Chesapeake Bay watershed.
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Table 8 summarizes the modeling results for the 2119 lakes located
in the Virginia potion of the Chesapeake Baywatershed. Under baseline
conditions, average nitrogen and phosphorus levels are 0.88 and
0.08 mg/l respectively, and chlorophyll a is 36.10 μg/l. With the TMDL,
these levels decrease by 16 to 18%.

4.2. Change in Trophic Distribution of VA Lakes

To translate these pollutant concentration estimates into trophic cat-
egories, we apply the results from the expert elicitation analysis. In par-
ticular, we use the ordered logit results from model 3 in Table 3 to
predict the trophic category/index for each of the 2119 lakes under
baseline and with-TMDL conditions. Although model 2 in Table 2 pro-
vides a better statistical fit than model 3, it requires data on turbidity
which are not available from our water quality model. We turn to
model 3 as the best alternative, given our data limitations. Table 8 re-
ports the resulting frequency distributions. Moving from the baseline
to TMDL policy regimes causes the percentage of lakes in the lowest
quality categories (D/4 and E/5) to decrease from 43 to 32%, and those
in the highest two categories (A/1 and B/2) increases from 16 to 23%.
Using Eq. (4), we can convert these frequency distributions into a
percentage-weighted average index (qual), which is 3.41 in the baseline
and 3.15 with the TMDL. Therefore, the average trophic index level
changes by 0.26 points (on the 1 to 5 scale).

For all the lakes in Virginia, including those outside the Chesapeake
Bay watershed, the shift in water quality distribution is somewhat dif-
ferent.Water quality in the 36% of Virginia lakes that are located outside
of the Baywatershed is not expected to changes as a result of the TMDL.
Factoring in these additional lakes, we estimate the change in the aver-
age trophic index level for all lakes in the state due to the TMDL to be
Δqual = 0.16 index points.

4.3. Aggregate Benefit Estimates for VA Households

In the final step we use the results from the contingent valuation
model to the estimate average WTP among Virginia households for
the water quality change, and we multiply this value by the total num-
ber of households in Virginia to estimate aggregate benefits for the
state's residents. Specifically, we apply Eq. (6) with the parameter esti-
mates frommodel 5 in Table 7. This model uses the continuous index to
measure changes in water quality. By recoding all uncertain responses
as “no” votes, it also provides more conservative estimates of WTP
than the other models. To specify the vector of household characteris-
tics – college, triplastyr, and tripnextyr – we use the mean values
(0.392, 0.263, and 0.277 respectively) from our sample of survey re-
spondents from Virginia (N = 217). The resulting mean annual WTP
estimate is $60 per household, with a 95% confidence interval of ($51,
$70). Aggregating across 3.06 million households (based on 2010 cen-
sus data) in the state, the total estimated benefits for Virginia house-
holds from lake water quality improvements going from baseline

conditions to TMDL conditions are $184 million per year in 2010 dol-
lars, with a 95% confidence internal of ($157 million, $214 million).18

5. Conclusion

As states and other jurisdictions continue to develop numeric nutri-
ent criteria and load limits to protect surface waters, it is important for
policymakers to have analytical tools that allow them to gauge the eco-
system service benefits resulting from these rules. In a recent PNAS
paper Keeler et al. (2012) discuss the extent to which current economic
and ecological modeling approaches provide these tools. They write
that:

“…most water quality valuation tools fall short of the needs and ex-
pectations of decisionmakers. [One] shortcoming… is that valuation
assessments are often not linked with changes in management …
that lead to water quality changes…. Finally, economic models for
valuingwater quality related ecosystem services are often poorly in-
tegrated with ecological and hydrological models.”

[pp. 18619–18620]

Keeler et al. go on to suggest a template for integrating the various
models and data in a way that would address these limitations. Our
paper describes an operational version of this template and illustrates
how it can meet the needs of policy makers while avoiding many of
the limitations of past studies. Most importantly, the framework pro-
vides a link between changes in nutrient related water and humanwel-
fare by integrating environmental assessment and economic valuation
methods. Our innovation is to use expert elicitation to estimate a func-
tion that translates multiple nutrient-related water quality parameters
into on ordinal index of water quality categories, and a parallel stated
preference survey that maps the index levels to observable features of
water bodies using lay audience descriptions. The valuation application
then uses changes in index levels – expressed as a shift in the distribu-
tion of water quality at lakes in the state – as the commodity to be val-
ued. By closely coordinating the outputs from our environmental
modeling with the inputs needed for economic modeling we provide
a protocol that allows an analyst to directly trace the effects of a policy
from changes in nutrient loads to changes in numeric ecosystem health
indicators, and on to ecosystem services and values.

We use the Virginia TMDL case study to demonstrate how our gen-
eral framework can be applied in specific application. It also serves to
demonstrate the advantages and main contributions of this approach
compared to other existing approaches. For example, existing methods
can be used to translate multiple water quality parameters into a water
quality index (Cude, 2001; Vaughn, 1986) and benefit transfer functions
based on water quality indexes also exist (Carson and Mitchell, 1993;
Johnston et al., 2005; Van Houtven et al., 2007); however, there is typi-
cally little evidence to demonstrate the correspondence between the in-
dexes used in these two functions. In contrast, our approach is
specifically designed to ensure correspondence. Moreover, our ap-
proach focuses specifically on nutrients and eutrophication in lakes,
whereas other approaches often add in other pollutants andwater bod-
ies, which further complicate the use and interpretation of a single
index. Finally, our approach defines the spatial boundaries of water
quality changes (i.e., in-state) and incorporates the distribution (per-
centage) of lakes across multiple quality categories. These combined

Table 8
Modeled water quality for VA lakes in Chesapeake Bay watershed (N = 2119).

Baseline With TMDL

Mean total nitrogen (mg/l) 0.881 0.719
Mean total phosphorus (mg/l) 0.084 0.071
Mean chlorophyll a (μg/l) 36.1 30.4
Percent by trophic category/index
A/1 2% 4%
B/2 14% 19%
C/3 42% 46%
D/4 26% 22%
E/5 17% 10%

Average trophic index (qual) 3.41 3.15

18 We caution against interpreting these results as the benefits specifically attributable to
the Chesapeake Bay TMDL, in particular because some portion of the expected load reduc-
tions and water quality improvements by 2025 would most likely have occurred even
without the TMDL. Instead, the estimates represent the benefits of the difference between
before-TMDL and after-TMDL conditions.
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features are most often not included in other existing benefit transfer
functions for water quality.

Despite these advantages, it is also important to recognize the limi-
tations of our approach and to interpret the results of the case study ac-
cordingly. In particular, the calculation anduse of an average index (qual
from Eq. (4)) to combine the statewide distribution of lake trophic
water quality into a single continuous measure is convenient but re-
quires somewhat strong simplifying assumptions. Most importantly it
interprets a 5-level ordinal index as a cardinal measure of water quality
and assumes that the average measure across lakes is what matters to
individuals. Although the change in this average index (in logarithmic
form) is statistically significant in our regression analyses of the contin-
gent valuation data, it is not necessarily the most accurate representa-
tion of preferences. Nevertheless, other benefit transfer approaches
applied to state or nationwide changes in water quality (e.g., USEPA,
2000, 2009a,b) have required similar simplifying assumptions.

Our sense is that coordinated expert elicitation and stated pref-
erence modeling has great potential for use in analysis of environ-
mental policy. The water quality ideas presented here could be
replicated for other regions, and comparisons made amongst simi-
lar model structures calibrated to the varying spatial conditions.
More generally, policy decisions related to, for example, air quality
and biodiversity preservation could benefit from our approach. As
an air quality example, it would be useful to quantify experts' opin-
ions on how ambient levels of particulate matter map to the sever-
ity of illness or duration of symptoms for people of varying ages and
existing health status. These could in turn be the commodities that
people express preferences for in a stated preference survey. As a
biodiversity example, quantifiable opinions on how different sizes
and positioning of habitat preservation map to actual improve-
ments in survivability of specific species would be a useful way to
connect things over which people have preferences for – species
protection – with the policy lever available to policy makers.

Implementing our protocol for water quality required several steps
that condensed complex systems and processes into manageable di-
mensions. This would undoubtedly be the case for other applications
of our protocol, and so research should focus on explicitly identifying
the consequences of any needed simplifications. An example in our
case corresponds to the linear nature of our quality index. The five levels
of lake water quality in our survey (summarized in Table 4) were de-
signed to correspond to the rankings used by the experts. As previously
discussed, based in part on our focus group work we decided not to
allow the individual attribute levels (color, clarity, fish, etc.) to vary in-
dependently, in order to minimize respondents' cognitive burden and
the potential for invalidity that the added complexity would imply.
This decisionmeanswe are not able to consider the potential for nonlin-
ear relationships between attribute levels and the index rankings. Con-
sideration of the consequences for policy analysis of these types of
decisions should be part of any subsequent research on this method.
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