

The Cost-Effectiveness of Ibandronate in the Treatment of Postmenopausal Osteoporosis in the US

Stephanie R. Earnshaw,¹ Christopher N. Graham,¹ Mayur M. Amonkar,² and Charles E. Barr³ ¹RTI Health Solutions, Research Triangle Park, NC, USA; ²GlaxoSmithKline, Collegeville, PA, USA; ³Roche Pharmaceuticals, Nutley, NJ, USA

ABSTRACT

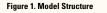
Objectives: We determined the cost-effectiveness of monthly ibandronate compared to weekly bisphosphonate treatments for women in the US. age ≥50 years, with prevalent radiologic vertebral deformity and hip BMDT-score ≤-2.5.

Methods: A Markov model was developed to evaluate the lifetime cost-effectiveness of monthly ibandronate and weekly bisphosphonates. Vertebral, hip, and wrist fracture efficacy were assigned a bisphosphonate class effect as estimated by the literature. Persistence with weekly bisphosphonates was evaluated at rates reported from observational studies (36% at year 1, 24% for years 2 through 5). Fifty percent relative improvement in persistence (54% at year 1, 36% for years 2 through 5) among women receiving ibandronate was assumed based on previous improvements in persistence for weekly bisphosphonates. Both fracture risk and mortality were allowed to increase as patients aged. Yearly drug costs were referenced to wholesale acquisition costs for each bisphosphonate. Direct health resource costs for fracture states were estimated from published literature and discounted 3% per annum. All costs were reported in 2004 US\$

Results: More fractures were avoided (vs. no treatment) with monthly ibandronate (99.8 per 1,000 women) than with weekly bisphosphonates (62.9 per 1,000 women), resulting in lower fracture care costs per woman (\$6,352 and \$6,663, respectively). Five-year drug costs per patient were \$1,138 with weekly bisphosphonates and \$1,576 under conditions of improved persistence with monthly ibandronate. The incremental cost per quality-adjusted life year (QALY) gained (vs. no treatment) was lower with monthly ibandronate (\$13,470) compared to weekly bisphosphonates (\$16,742). Changing assumptions in the model to those of previously published cost-effectiveness models produced similar results, providing external validity for this model

Conclusion: Ibandronate is a cost-effective intervention for the treatment of postmenopausal osteoporosis. Incremental persistence with bisphosphonate therapy thus improves the benefit realized in patient populations These benefits include fewer fractures for patients without significant increases in costs to payers.

BACKGROUND


Bisphosphonates are currently the most widely used drugs for osteoporosis and have been shown to be effective in preventing osteoporotic fractures (Kanis et al., 2002). However, more than 50% of patients on weekly bisphosphonate regimens discontinue use within 1 year (Gold et al., 2006; Cramer et al., 2005). Previously, weekly dosing showed an improvement in patient persistence over daily dosing (Gold et al., 2006; Cramer et al., 2005). Ibandronate, a new monthly administered oral bisphosphonate, provides an opportunity to further improve persistence, a parameter not well modeled in previous analyses on the cost-effectiveness of osteoporosis therapy (Johnell et al., 2003; Grima et al., 2002). We developed a model to determine the costeffectiveness of monthly ibandronate compared to weekly bisphosphonate treatments for women in the US with postmenopausal osteoporosis.

METHODS

A Markov model (Figure 1) was used to simulate a cohort of postmenopausal womer aged ≥50 years with a prevalent radiologic vertebral deformity and a hip bone mineral density T-score of ≤-2.5. Model parameters and assumptions are as follows:

Parameters and Assumptions

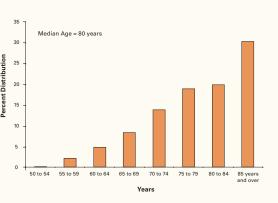
- Patients transition between the health states annually for the remainder of their lifetime.
- Age distribution of osteoporotic women (US Census Bureau, 2002), the prevalence ofT-scores ≤-2.5 (Looker et al., 1997), and the prevalence of vertebral fractures among those with T-scores ≤-2.5 (O'Neill et al., 1996) were obtained from published literature. It was assumed that the postmenopausal population is represented by those aged ≥50 years (Figure 2).
- Third-party payer perspective was taken. Comparators included monthly ibandronate or weekly bisphosphonates versus no
- treatment. Transition probabilities were based on published literature, accounting for the impact of increasing age, prior fracture, and
- mortality (Black et al., 1999; Kanis et al., 2000a 2000b: Johnell et al 2004: Klotzbeucher et al., 2000; CDC, 2003) • Fracture risk reduction efficacy for vertebrae
- (43%), hip (33%), and wrist (17%) were assigned a bisphosphonate class effect, as estimated in the literature (Kanis et al.,
- Onset of efficacy was assumed to occur linearly until full fracture efficacy is achieved at 6 months.
- Maximum time on therapy was assumed to be 5 years.
- Waning fracture benefit following therapy discontinuation was modeled as a linear decline proportional to the mean length of time on therapy.
- Persistence with weekly bisphosphonates was evaluated at rates reported from observational studies (36% at year 1: 24% for years 2 through 5). A 50% relative improvement in persistence with monthly ibandronate (54% at year 1; 36% for years 2 through 5) was selected to approximately
- match the difference observed between weekly bisphosphonate regimens compared to daily dosing (Gold et al., 2006; Cramer et al 2005)
- Yearly drug costs were referenced to wholesale acquisition costs for each bisphosphonate (Red Book 2006)

Starting State

Death

Patients can

progress to death

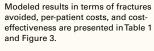

from any state.

Vertebral Post Verte Fracture * For simplification, we assume that once patient experience a hip fracture or vertebral fracture they can experience no further wrist fractures. Patients in the post-hip-fracture state can experience further vertebral

Wrist Fracture

Figure 2. Age Distribution of Bisphosphonate-Treated Patients in the Economic Model

fractures through a state prevalence estimate



 Direct health resource care costs (Eddy et al., 1998) and utilities (Brazier et al., 2002; Tosteson et al., 2001) for fracture states were estimated from published literature and discounted 3% per annum.

· A sensitivity analysis was performed around the expected improvement in persistence for monthly ibandronate.

Total

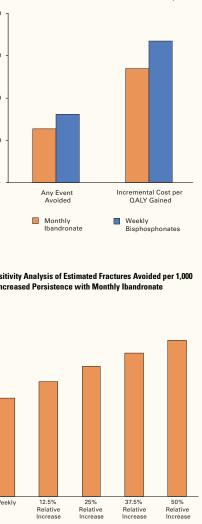


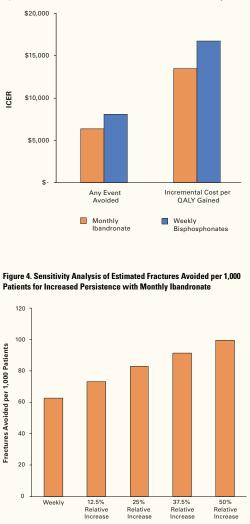
Figure 3. Incremental Cost-Effectiveness Ratios for Selected Endpoints

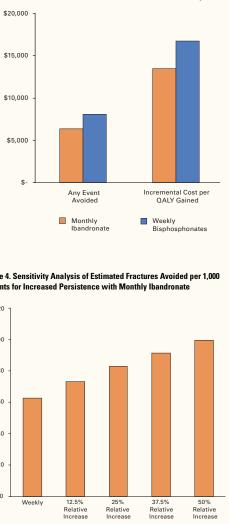
Table 1. Estimated Fractures Avoided per 1,000

\$ 1,576 \$ 1,138 Fracture Care \$6.352 \$ 6.663 \$ 7,927 \$ 7.801 Note: With no tre t, 160 hip fractures, 455 vertebral fractures, and 53

- A 50% relative improvement in persistence yields approximately 59% more fractures avoided.
- Increased persistence does result in increased drug costs. However, fewer fractures estimated with monthly ibandronate results in a reduction in fracture care costs compared to weekly bisphosphonates.

• A 50% improvement in persistence lowers incremental cost-effectiveness ratios (ICERs) by 20% to 23%


Sensitivity Analysis


A sensitivity analysis was performed for monthly ibandronate around the increased amount of persistence expected due to the monthly formulation of ibandronate (Figure 4).

 Small improvements in persistence produce clinical benefits in terms of decreased number of fractures.

Comparison to Other Models

By changing model parameters and assumptions to resemble those of a previous osteoporosis economic model (Grima et al., 2002), ICERs for QALYs gained were similar between the two models for weekly bisphosphonates vs no treatment (published model = \$16,158 vs. our model = \$18,534).

Relative Increase Over Weekly Persistence

CONCLUSIONS

- · Treating postmenopausal, osteoporotic women with monthly ibandronate is cost-effective.
- Model results consider direct costs only. The addition of societal costs is likely to further improve the cost-effectiveness of all bisphosphonate
- Greater fracture reduction is seen when persistence is improved.

REFERENCES

Black DM et al. J Bone Miner Res 1999: 14:821-8.

Brazier JE et al. Osteoporos Int 2002; 13:768-76.

Centers for Disease Control and Prevention, 2003, US National Vital Statistics Reports

Cramer JA et al. Curr Med Res Opin 2005: 21:1453-60.

Eddy DM et al. Osteoporos Int 1998: Suppl 4.

Gold DT et al. Consistent Improvement in Bisphosphonate Persistence with Less Frequent Dosing: Review Comparing Results of Three Database Studies, International Society for Clinical Densitometry Annual Meeting, 2006.

Grima DT et al. P&T 2002: 27:448-55

Johnell O et al. Osteoporos Int 2004; 15:38-42.

Johnell O et al. Pharmacoeconomics 2003; 21:305-14.

Kanis JA et al. Health Technol Assess 2002: 6(29).

Kanis JA et al. Osteoporos Int 2000a: 11:669-74.

Kanis JA et al. Osteoporos Int 2000b: 12:356-61.

Klotzbeucher CM et al. J Bone Miner Res 2000: 15:38-42.

Looker AC et al. J Bone Miner Res 1997: 12:1761-8

O'NeillTW et al ./ Bone Miner Res 1996: 11:1010-8

Tosteson ANA et al. Osteonoros Int 2001: 12:1042-9

Red Book for Windows 2006 Version 61127(39)

US Census Bureau 2002 2002 US Census

CONTACT INFORMATION

Stephanie Earnshaw, PhD U.S. Head of Health Economics RTI Health Solutions, RTI International 3040 Cornwallis Road, PO Box 12194

Research Triangle Park, NC 27709-2194 Phone: 919-485-2730

Fax: 919-541-7222 E-mail: searnshaw@rti.org

Presented at: 11th Annual International Meeting of the International Society for Pharmacoeconomics and Outcomes Research

May 20-24, 2006, Philadelphia, PA